WIMAX FORUM® WIMAX Oil & Gas 2014 @ OilComm HOUSTON, TX | NOVEMBER 5

HOSTED BY:

F O R U M®

SUPPORTED BY:

A Subsidiary of BC Hydro

WiMAX Oil & Gas 2014

November 5, 2014 Houston, TX

Greg Kunkle

Keller and Heckman LLP 1001 G Street, N.W. Washington, DC 20001 202-434-4178 kunkle@khlaw.com

Preliminary Word

- This presentation provides information about the law. Legal information is not the same as legal advice, which involves the application of law to an individual's specific circumstances. The interpretation and application of the law to an individual's specific circumstance depends on many factors. This presentation is not intended to provide legal advice.
- The information provided in this presentation is drawn entirely from public information. The views expressed in this presentation are the authors' alone and not those of the authors' clients.

Presenter

- Greg Kunkle practices in the area of telecommunications, assisting corporate clients and trade associations with various legal and regulatory matters including matters before the Federal Communications Commission.
- Greg regularly assists clients in identifying and acquiring wireless spectrum through a variety of means, including spectrum leasing, purchase and sale of licenses, and the FCC's auction process. His spectrum acquisition practice spans several frequency allocations.

FCC's View

4 | www.khlaw.com | KELLER AND HECKMAN LLP

Copyright © 2011

FCC's View

- 2013 "While there are no "utility-specific" frequency bands [...] there is a wide range of bands and services that [...] could be useful to meet the utility industry's varied needs."
 - Including 700-960 MHz; 4.9 GHz band; 5925-6425 MHz; 23 GHz, 27 GHz, 31 GHz, 38 GHz; the 70/80/90 GHz bands

• 2014 – "SCADA, smart grid and similar applications [...] are not dedicated to communications to prevent human injury and property damage, but are also used for day-to-day facilities management and other purposes that primarily serve the business needs of the licensee."

Spectrum Resources

Copyright © 2011

Spectrum Resources

- Point-to-Point
- Two-Way Voice
- Narrowband Point-to-Multipoint
- Broadband Point-to-Multipoint

Licensed Bands

• 6 GHz, 11 GHz, 18 GHz

- Some congestion but generally available

• Unlicensed Bands

- 2.4 GHz, 5.8 GHz
 - Secondary

Two-Way Voice

VHF/UHF

- Generally shared
- Exclusive spectrum congested in many areas
- 800/900 MHz
 - Congested in many areas

Narrowband Point-to-Multipoint

• 941/932 MHz, 952/928 MHz

- Generally 12.5 kHz
- Primary

• 450-470 MHz

- 6.25 kHz, 12.5 kHz, 25 kHz
- Generally secondary, some primary

150-170 MHz

- 6.25 kHz, 12.5 kHz, 25 kHz
- Secondary and mobile use required except for very narrow bandwidth channels (6 kHz, 3 kHz)

Broadband Point-to-Multipoint

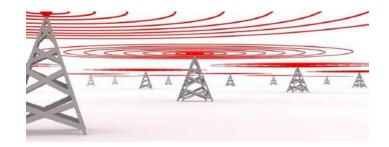

Unlicensed

- 900, 2.4, 5.8
- TV White Spaces

Hybrid Licensed/Unlicensed

- 3.65-3.70 GHz
 - -Weak interference protections
 - Possible Rule Change?

What's Missing???


13 | www.khlaw.com | KELLER AND HECKMAN LLP

Copyright © 2011

What's Missing

- Point-to-Point
- Two-Way Voice
- Narrowband Point-to-Multipoint
- Broadband Point-to-Multipoint

Options

Copyright © 2011

	Narrowband ≤ 25 kHz	Midband 25 kHz to 500 kHz
CMRS Paging	YES	YES
AMTS (217/219 MHz)	YES	YES
220-222 MHz	YES	YES
Narrowband PCS (901/930/940 MHz)	YES	YES
MAS (928/959, 932/941 MHz)	YES	Some

Regulatory Considerations

- Spectrum Eligibility and Use Restrictions
 - Waivers often required
- Co-Channel and Adjacent Interference Protection: Rights and Obligations
- Construction/Substantial Service Showings
 - Benchmarks and timing considerations

Type of Agreements

- Asset/License/Frequency Purchase Agreements ("APA")
 - Assignments
 - Partitions (portion of area)
 - Disaggregation (portion of spectrum)
- Leases and Subleases
- Challenges of lease v. purchase
 - Limitations and restrictions on use
 - Subject to (Sub)Lessor vagrancies
 - Shifting financial arrangement

Future Options

- FirstNet 700 MHz
- Pacific DataVision 900 MHz
- 4.9 GHz
- 3550-3650 MHz
- Broader Spectrum Effort

Thank you

Greg Kunkle Partner

Keller and Heckman LLP 1001 G Street, N.W. Washington, DC 20001 202-434-4178 kunkle@khlaw.com

www.khlaw.com

Washington, D.C. • Brussels • San Francisco • Shanghai

The Power of Trust. The Future of Energy.

SCADA over WiMAX

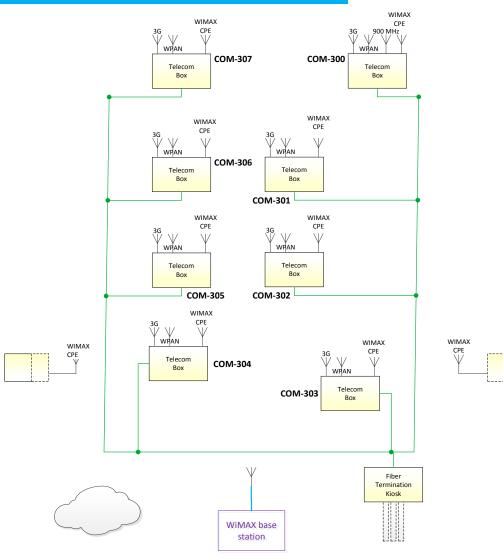
November 5, 2014

We offer a one-stop-shop approach for businesses that require technical engineering expertise, standards and code testing, as well as quality testing and failure analysis services.

Powertech is a subsidiary of BC Hydro. We provide specialized testing and investigation services to support BC Hydro's capital assets: generation, transmission and distribution

Outline

- Suitability of WiMAX for SCADA
 - Other options
 - SCADA test network
- WiMAX Smart Energy Use Cases
- WiMAX quality of service
 - Definitions
 - QoS example
- Network examples
- Conclusion


Suitability of WiMAX for SCADA

• Other options

	Implementation	Pros	Cons	
Point to Point radio	Relatively easy	Throughput and latency and symmetrical	Deployment is difficult for a large number of remote sites.	
Cable (Electrical)	Depends on the environment	Can be economic in some environments	Distance limited, needs repeaters to maintain throughput.	
Cable (Optical)	environment	Very good throughput and latency and symmetrical	The environment needs to be supportive.	
Cellular	Easy	Fast deployment, availability of equipment.	Coverage and quality of service	
WiFi	Relatively easy	Availability of equipment	No protection from interference	
Mesh	Relatively	Ease of deployment	Throughput reduces and latency increases significantly with mesh depth	
Proprietary point to multi- point	Relatively easy	Ease of deployment	Equipment availability may be limited	
WiMAX point to multi- point	Relatively easy	Ease of deployment and availability of equipment	In some area spectrum availability may be limited	

SCADA test network

3G CUG

WiMAX Smart energy Use Cases

• WiMAX Smart Energy use cases baseline

WiMAX Forum[®] System Profile Requirements for Smart Grid Applications

Requirements for WiGRID

WMF-T31-002-R010v01

WMF Approved (2013-02-05)

WiMAX Smart energy Use Cases

• WiMAX Smart Energy use case communication requirements

Use Case	DL (kbit/s)	UL (kbit/s)	Latency (ms)	Packets per Sec	Msg. Freq.	Payload Type	Active / Idle	Predictability
1 - Situational Awareness	1.0 kbit/s	5.0 kbit/s	1000 ms	5 pps	5 sec	ТСР	1sec / 5sec	Good
2 - Monitoring	~10 kbit/s	~300 kbit/s	100 ms	100 pps	100 ms	TCP and UDP	Active	Good
3 - Control	1.0 kbit/s	5.0 kbit/s	100 ms	10 pps	1 sec	ТСР	1sec / 5sec	Random
4 - Protection	150 kbit/s	150 kbit/s	20 ms	100 pps	100 ms	UDP	Active	Random
5 - Metering Regional Collector	5 kbit/s	64 kbit/s	1000 ms	20 pps	100 ms	ТСР	Active	Good
6 - Remote Site Communications	500 kbit/s	500 kbit/s	100 ms	100 pps	20 ms	ТСР	Active	Good
7 - Direct Smart Meter Reading (AMI)	0.05 kbit/s	1.0 kbit/s	5000 ms	1 pps	5 min to 6hr	ТСР	100ms / 4secs	Good

Channel bandwidths by frequency band

Channel bandwidth by frequency bands for WiGRID								
	1.4 GHz		1.8 GHz	2.3 GHz	3.65 GHz	5.8 GHz		
Duplex	FDD (A & B)	TDD	TDD	TDD	TDD	TDD		
3.0 MHz	Should Must			May	May			
3.5 MHz			Should	Must		Should		
5.0 MHz		Should	Must		Must	Must		
7.0 MHz					May			
10.0 MHz			Must		Must			

Usable frequency bands

- Channel plan
 - 3.65 GHz

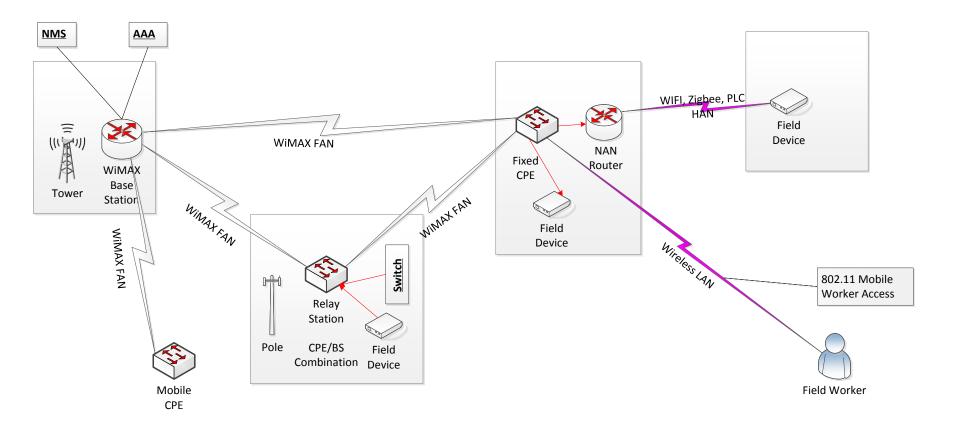
365	0 MHz			3675 MHz			37	00 MHz	
								$I_{ }$	
	Restricted Protocols WiMAX to WiMAX systems								
	Unrestricted Protocols WiMAX to WiMAX and other systems								
								1	
5 MHz Channels	3652.5 365	5 <mark>7.5</mark> 3662.	5 3667.5	3672.5 3677	7.5 3682.5	3687.5 36	6 <mark>92.5</mark> 3697	.5	
10 MHz Channels	3655		3665	3675	36	85	3695		
7 MHz Channels	3653.5	3660.5	3667.5	3674.5	3681.5	3688.5	3695.5		

 Capacity

Capacity by bandwidth								
	Max with QPSK 1/2	Max with 64 QAM 5/6	Cell capacity at edge					
5.0 MHz	2.2	11.0	2.5					
7.0 MHz	2.8	14.3	3.2					
10.0 MHz	4.4	22.4	5					

WiMAX Quality of Service Definitions

QoS Category	Applications	QoS Specifications
UGS: Unsolicited Grant Service	VoIP, T1 replacement	Maximum Sustained Rate Maximum Latency Tolerance Jitter Tolerance
rtPS: Real-Time Packet Service	Streaming Audio or Video	Minimum Reserved Rate Maximum Sustained Rate Maximum Latency Tolerance Traffic Priority
ErtPS: Extended Real-Time Packet Service	Voice with Activity Detection (VoIP)	Minimum Reserved Rate Maximum Sustained Rate Maximum Latency Tolerance Jitter Tolerance Traffic Priority
nrtPS: Non-Real-Time Packet Service	File Transfer Protocol (FTP)	Minimum Reserved Rate Maximum Sustained Rate Traffic Priority
BE: Best-Effort Service	Data Transfer, Web Browsing, etc.	Maximum Sustained Rate Traffic Priority



WiMAX Quality of Service Example

Service Profile Configuration										
UL SF Name	Classification Rule Priority (0- 255)	Direction	Scheduling Service	Min Rate	Max Rate	Traffic Priority	RT Interval Grant	UGS Interval Polling	HARQ- MAX Retries	MAX Latency
UL Medium-RT	0	UL	RT	Medium	1.5 Mbps	5	3 min	N/A	3	0
UL Low-RT	1	UL	RT	Low	1.5 Mbps	5	3 min	N/A	3	0
UL Low DA-UGS	2	UL	UGS	Low DA	128kbps	7	N/A	3 min	3	20 ms
UL Medium DA-UGS	3	UL	UGS	Medium DA	192kbps	7	N/A	3 min	3	20 ms
UL High DA-UGS	4	UL	UGS	High DA	256bps	7	N/A	3 min	3	20 ms
UL-SCADA-RT	5	UL	NRT	(SCADA)4.7kbps	1.5 Mbps	5	3 min	N/A	3	0
UL-High-RT	6	UL	RT	High	1.5 Mbps	5	3 min	N/A	3	0
DL SF Name										
DL Medium-RT	0	DL	RT	Medium	1.5 Mbps	5	3 min	N/A	3	0
DL Low-RT	1	DL	RT	Low	1.5 Mbps	5	3 min	N/A	3	0
DL Low DA-UGS	2	DL	UGS	Low DA	128kbps	7	N/A	3 min	3	20 ms
DL Medium DA-UGS	3	DL	UGS	Medium DA	192kbps	7	N/A	3 min	3	20 ms
DL High DA-UGS	4	DL	UGS	High DA	256kbps	7	N/A	3 min	3	20 ms
DL-SCADA-RT	5	DL	NRT	(SCADA)4.7kbps	1.5 Mbps	5	3 min	N/A	3	0
DL-High-RT	6	DL	RT	High	1.5 Mbps	5	3 min	N/A	3	0

WiMAX based SCADA network

Conclusions

- WiMAX can provide a good solution for SCADA end devices.
- Can be part of a larger network.
- Understanding of the end using devices.
- Calculate or find.
 - Throughput needed, continuous, peak, frequency.
 - Latency tolerable.
 - Response time.
 - Security requirements.
 - RF plan.
- Decide on the QoS parameters.
- Verify and or test the solution.
- Smaller networks don't intense verification, but larger network are difficult to simulate.
- Optimize after deployment.

Powertech

The Power of Trust. The Future of Energy.

Thank you

eugene.crozier@powertechlabs.com

wireless specialist

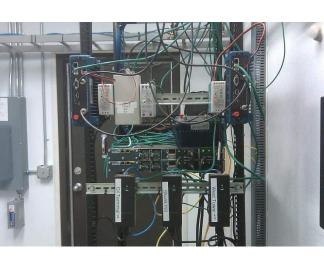
Digital Oilfield Application Solutions

Judy LeStrange, Sr Product Manager GE Wireless judy.lestrange@ge.com

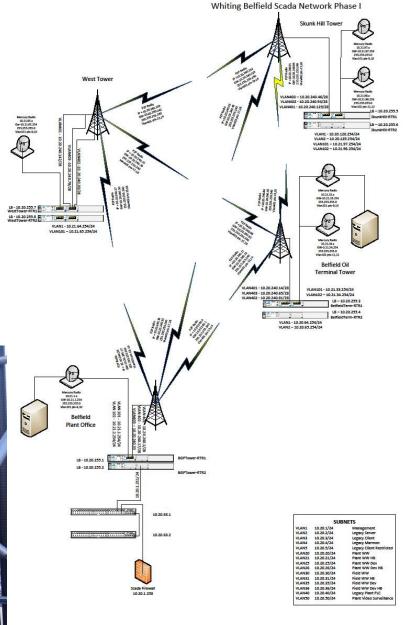
Imagination at work.

Agenda

- 1. Industry Challenges
- 2. Orbit MCR Product and Features Overview
- 3. Oil & Gas Applications



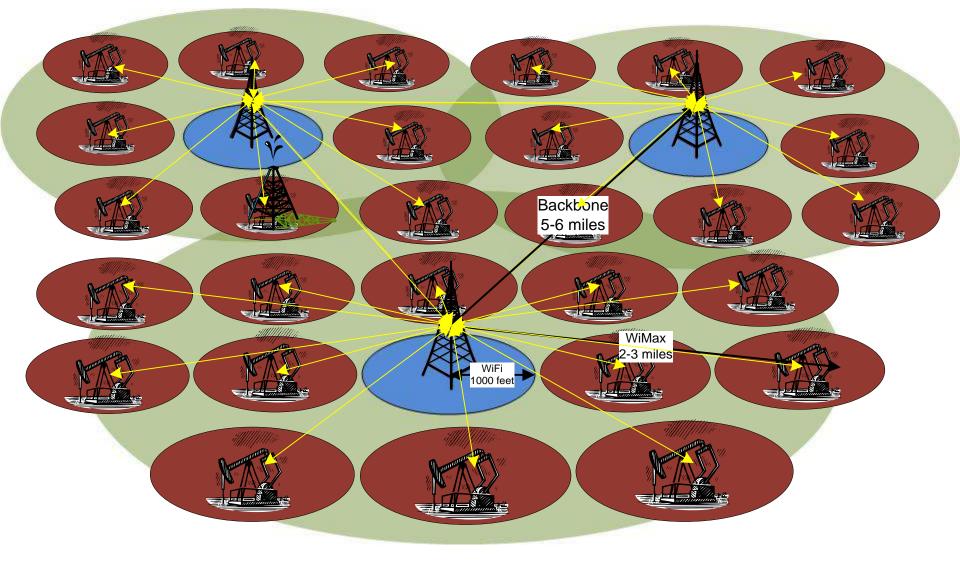
Industry Challenges


Case study 2012

- GE Customer: Wireless Data Communications out of Liberal, Kansas is a full service partner to GE MDS.
- End customer is an oil firm drilling in North Dakota.
- Data requirements were low, however video used at one site drove higher throughput requirement.
- Customer needed 24/7 SCADA data provided.
- Timeline was critical as weather turns in November inhibiting tower construction and radio field deployment.
- Outdoors CPEs chosen for several sites.

EP ENERGY*

Case study 2013


- Field Connectivity
- Site Mobility
- Field Applications and Reporting
- Voice
- 99% Communication availability
- Frequency of Polling
- Bandwidth utilization
- Total number of devices, users, and protocols
- Integration of current technology (IP telephony, WiFi, CygNet)
- Network and data security
- Device monitoring, management, and support
- Power Efficiency
- Remoteness of field locations
- Scalability

Mission:

Develop a scalable, repeatable, and costeffective digital oilfield communications solution to meet the current and future needs of EP Energy field operations.

EP Energy WiMAX Field

O&G Applications Challenges & Requirements

Challenge

Deployment in harsh physical environments with little access to electricity

Communication access to applications must be reliable

Networking assets must be secure and resisting to cyber attacks and intrusion

Ability to operate multiple applications on same network infrastructure

Cost-effective reachability into rural areas with no cell coverage

Investment Protection: Network needs to accommodate future applications

imagination at work

Networking Requirement

Ruggedness and hardening of networking equipment, low power consumption suitable for solar sites

High Availability and longevity of communication equipment and reliability of communication links

Support for local and central authentication, communication encryption, secure firmware

Support for SCADA/remote monitoring applications, Video, Workforce mobility

Support for long range private and unlicensed networking

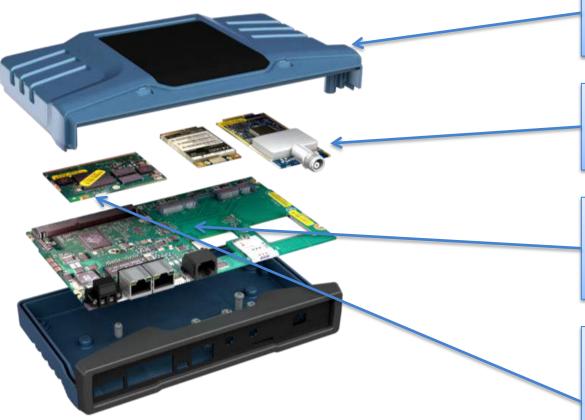
Investment commitment from vendor and flexibility to support future technologies

Orbit MCR Product and Features Overview

Orbit MCR Introduction

- Multi-service, multi-access, hardened M2M gateway supporting a wide range of networking and wireless technologies
- Purpose-built for mission-critical industrial applications
- Enables application convergence to optimize CAPEX & OPEX
- Architected using a state of the art cyber security framework
- Designed as a "platform":
 - ✓ New Linux-based ORBIT OS
 - \checkmark Separation of Data and Control Planes
 - ✓ Modular software architecture
 - ✓ Modular hardware architecture

Orbit's Fit Within GE Wireless Portfolio


Wireless Fiber LAN Extension **Data Acquisition** Backhaul Transport Access Sensors & Measurement **Converged Applications** Long Range High Capacity Gigabit Backbone JungleMUX SONET JunaleMUX T1 WiYZ **Orbit MCR Series** Intrepid/Ultra 2.4, 5.4, 5.8GHz Unlicensed and Mesh for Serial, Analog & Converged Communications OC-48 Transport & Access T1 Access Multiplexer With 4.9GHz Licensed Microwave Digital I/O Sensors 3G/4G, High Perf Unlicensed, Multiplexer With GiGE Integrated CDAX Wi-Fi, Ethernet, Serial E1MX Netio Intrepid HC MC/OIP TN1U SDH STM-16 Transport & Access Unlicensed For Analog & **Mercury Series** Up to 38GHz Licensed E1 Access Multiplexer With Multiplexer With GIGE Digital I/O Sensors 1.8 GHz and 3.65GHz WiMAX Microwave Integrated CDAX SD Series **iNET** Series Intrepid P2MP **TN1Ue SDH** E1MXe Licensed for IP/Serial Long Range 512Kbps 5.4 and 5.8GHz Unlicensed STM-16 Transport & Access E1 Access Multiplexer With Unlicensed for IP/Serial Multipoint Microwave Multiplexer With Gigabit Integrated CDAX entraNET Ethernet Unlicensed for IP/Serial **TransNET** Unlicensed for Serial X790 Series Licensed Redundant, Full-Duplex Master Station

DGT Unlicensed Distributed Generation Trip Control

PulseNET NMS

VistaNET NMS

The Goods Under the Hood

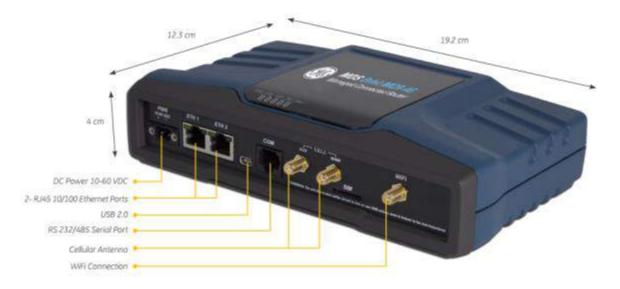
Superior Ruggedness & Reliability

Ruggedized die-cast aluminum enclosure provides enhanced thermal dissipation for extended reliability.

Diverse Wireless Support

Dual Wireless NICs enable mix-and-matching of various RF technologies for augmented deployment flexibility

Advanced System Performance


Modular, high performance processor, ASIC/hardware-accelerated data plane, and advanced QoS enable deterministic data processing and transmission.

Comprehensive Security Framework

Industry leading, standards-based security controls provide authentication, integrity, and confidentiality through strong cryptographic algorithms in addition to a full stateful firewall. Objective: protect the user, device and network.

Orbit MCR Features Overview

Quality / Reliability

- Highly rugged hardware design
- Built with IPC-610 Class 2
- World class automated PCBA manufacturing equipment
- Automated Final Testing Suite
- HALT& HASS Testing
- ATEX approved for EU
- IEEE 1613, IEC 61850-3
- CSA Class 1, Div. 2, UL 508, UL 1604 compliant
- EN 60079-0:2012, EN60079-15:2010 ATEX for EU
- -40° to 70° C
- Designed & Manufactured in Rochester, NY

Security & Management

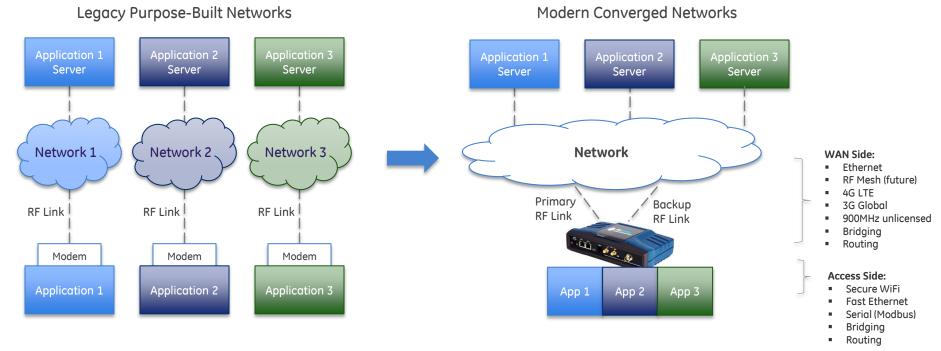
- Stateful Firewall
- IPSec VPN tunnel encryption
- Secure boot
- Digitally signed Hardware
- Digitally signed Software
- Signed (by customer) SW image
- Magnetometer tamper detection/alert
- AAA/RADIUS Authentication
- Event logging, syslog/TLS
- Secure management SSH, HTTPS, SNMPv3
- iPERF throughput diagnostic
- GUI & Juniper-style CLI mgmt

Networking

- Layer 3 routing capabilities
- Layer 2 switching capabilities
- Advanced L2-L4 Quality of Service classification and policing
- Concurrent bridging and routing across NICs
- ModBus RTU/TCP/UDP
- Low latency IEC 61850 GOOSE Support
- Serial/Terminal Server
- PAT/NAT/NTP/DNS/DHCP etc...
- Ethernet, RS232/485
- USB console management

Comms Flexibility

- 2 wireless NIC Cards
- CDMA and GSM Cellular
- High Perf 900 MHz Unlicensed
- WiFi with dual SSIDs
- Support for Point to point, point to multipoint and Mesh architectures on 900MHz ISM
- Variety of M2M deployment architectures



Orbit MCR Features Categorization

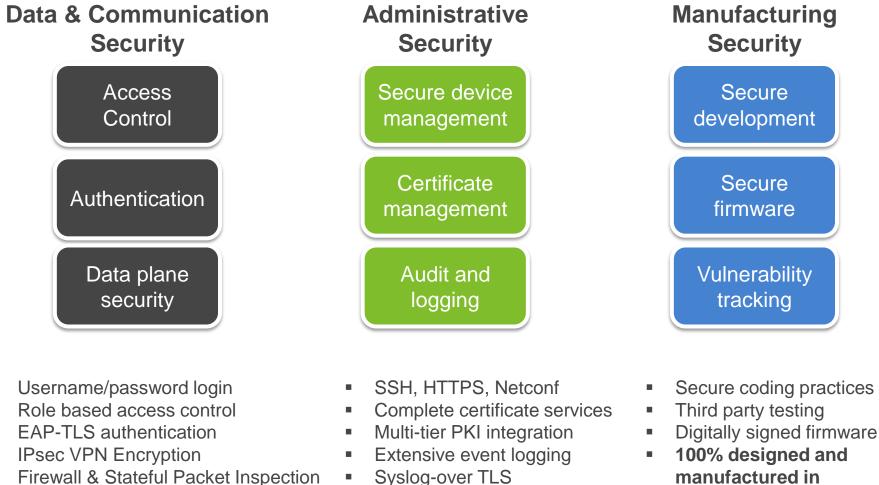
Capabilities	Applicability	Benefits
Router	Route between NICs or VPN	Flexible network design options
Switch	Bridge between NICs	Support of Layer 2 environments and IEC61850
Security	Authentication, Firewalling	Protection for user, device, and network
IPSec VPN	VPN server/client, Encryption	Encrypt & tunnel between sites, meet regulations
Advanced QoS	Apply to any NIC or port	Meet application SLA via deterministic networking
Redundancy	Routing / Path	Improve High Availability and network up time
Serial Server	Modbus/TCP/UDP	Connect into legacy install base
Various RF	ISM, Cellular, Wi-Fi, Licensed	Choices of RF based on application and terrain

Legacy vs Modern Converged Networks

- Dedicated network per application
- Point to point, no flexibility
- Mostly proprietary protocols
- Different RF technologies meant different vendors
- High cost of maintenance, operation
- Low capabilities`
- Low security

✓ Advanced QoS allows a single-box-solution for a mix of applications of different criticality

- Combined switching and routing between any interfaces allows for a variety of deployment scenarios
- ✓ Various network media technology including cellular, licensed, unlicensed, Wimax, Ethernet, Serial etc...
- \checkmark Single platform, multiple deployment architectures
- \checkmark Highly secure communications with VPN and firewalling
- $\checkmark\,$ Very easy to use through GUI and Web Wizards


Modern Network Convergence Requirements

Convergence Requirement	Orbit Solution
Internet Protocol Enabled	Support for IPv4 & services (PAT/NAT/DNS/DHCP/NTP, etc)
Flexible RF/network access options	4G/3G Cellular, 900MHz ISM, Wi-Fi, Ethernet, Serial, (Wimax, 15.4g/6LowPAN and Licensed Narrowband on roadmap)
Routing capabilities	Routing between any RF or physical interfaces allow for flexible positioning of Orbit in the network as a CPE or RF Aggregation
Support for IPv6 (native, tunneling)	IPv6 support with 6LowPAN will enable Internet of Things (IoT) applications (roadmap)
Switching/bridging capabilities	Full bridging capabilities between physical and RF interfaces (except for cellular) allow for flexible traffic flow designs
Deterministic behavior for critical traffic	Advanced L2-L4 Quality of Service functionality guarantee the mixing of critical and non-critical traffic on the same network without compromising critical traffic SLAs
Open Standards	Orbit built around standard-based protocols and architectures for industry compliance and interoperability
Modularity	Modular hardware architecture down to CPU board level is a future-proof investment protection
Advanced and comprehensive security	IP Sec VPN encryption, Firewalling, AAA/Radius, Signed Firmware/Hardware allow the transport of any type of L2 or L3 traffic securely
Edge or FOG Computing	Planned support for CPU virtualization enables distributed data crunching (running Apps) to support Big Data initiatives

Convergence: Utilizing the same wireless infrastructure for a multitude of applications. Application-specific determinism is guaranteed by advanced QoS and higher bandwidths.

Orbit Cyber Security Framework

- Firewall & Stateful Packet Inspection
 AES 128 & 256-bit encryption
- imagination at work

Rochester, NY USA

Intuitive GUI and Secure Device Management

- Multiple options for interfaces:
 - Web / HTTPS
 - SNMP v1/2/3
 - SSH command line interface (CLI)
 - NETCONF with YANG models
- Local and RADIUS user authentication
- Integration with GE MDS PulseNET NMS
- NTP client to synchronize time of day
- System restore points for configuration rollback
- Role based access control with three defined roles
- Local event logging with forwarding via syslog client
- Configuration scripts with user-defined configuration snapshots
- Digitally signed firmware images and network-based download
- Magnetometer for protection against physical tampering and theft

Configuration Wizards: VPN, NAT, Forwarding, Firewall, Etc ...

Example: port forwarding

rt Forwarding	Select Interface	
Port F Select III Outline R	Forwarding Wizard	Submit S
_		Concer food

Industrial Hardening and Ruggedness

- Built to last from the ground up
- Hardened cast aluminum enclosure
- Industrial hardening and endurance
- Power: 10-60VDC
 Consumption:
 4 watts average (20% duty cycle)
 3 watts in receive | 8 watts peak

- IEEE 1613 & IEC 61850-3 & ATEX compliant
 - CSA Class 1, Div. 2, UL 508, UL 1604
- -40 to +70 Celsius operating temp

Ran over by a Truck Shot at with a 12-gauge

Landed on pavement from a 100 feet vertical fall

Orbit MCR-4G still fully functional!

Orbit MCR Core & Device Roadmap

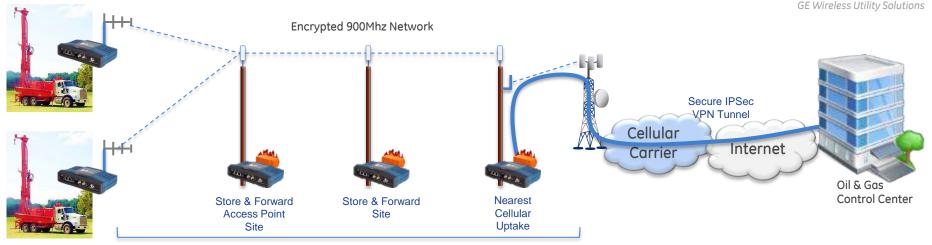
- IPv4 Routing (OSPF, RIPv2)
- Layer 2 Tunneling (L2TPvx)
- Full IPv6 Support
- CoAP, DTLS, Lightweight M2M Agent
- Cloud Service Integration
- Orion Processing Engine
- Orbit Family of Products With Various Form Factors & Functions For More Flexible M2M Integration:
 - ✓ Master Station
 - ✓ Lightweight edge router: Small footprint, low power, low cost, single NIC
 - ✓ Controller/Sensor class: Small footprint, low power, low cost, single NIC

Edge Orbit Routers

Orbit Sensor/Access Nodes

GE Confidential

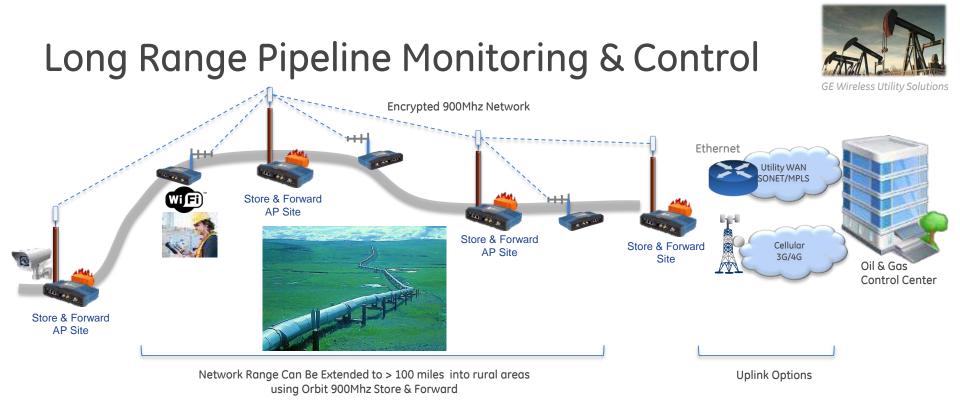
Orbit Oil & GAS Applications



Oil & GAS Applications

- 1. Cost-Effective Networking for Rural Well Drilling
- 2. Extended Range Pipeline Monitoring & Control
- 3. Performance Mesh for High Density Oil Fields
- 4. Extending the Network to the Sensor with WiYZ
- 5. The Connected Oil Field: Monitoring, Control, Workforce

Cost Effective Connectivity For Oil Drilling


Network Range Can Be Extended to > 100 miles into rural areas using Orbit 900Mhz Store & Forward

Application Characteristics

- Digitized oil drills generate gigabytes of data from drill sensors which are required to be transferred to headquarters for analysis and feedback on drilling location adjustment. Traditionally monitoring computers would write data on hard drives which are then transported after the drilling to headquarters for analysis.
- Extending a direct communication link into oil drills enables real-time analysis and feedback from headquarters. However most often drilling operations take place in rural areas with no cell coverage. Satellite communication is expensive, and building microwave towers is slow and expensive too.
- Orbit's 900Mhz store-and-forward solution enables up to 1.25Mbps of half-duplex bandwidth to be extended via up to 8 hops, with distance of up to > 30 miles between hops. Either hops can act as an access point to downstream orbit remotes located at drill sites.

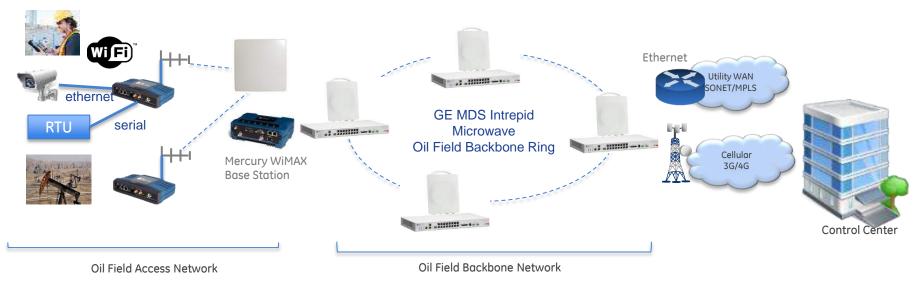
Orbit's solution is fast to deploy, cost-effective, requires no licensing, and is flexible enough to permit uplink of cellular or 900Mhz to headquarters.

Application Characteristics

- Oil pipelines applications can include cathodic protection telemetry and alarms, pressure and flow sensing, asset monitoring, video security, workforce remote access. Pipelines often extend through rugged terrain and remote areas with no cost-effective access to backhaul networking or nearness to cellular networks.
- Orbit's high performance 900MHz solution offers a store-and-forward technology which can extend to more than 30 miles between any two hops, and with a total of 8 hops per network. The same store-and-forward hops can simultaneously serve as an Access Point site for surrounding sensors within a range of up to 30 miles. In select sites, secure Wi-Fi access can be provided for maintenance workforce access or for WiFienabled video security devices. The total scalability can be up to 500 total remotes per Orbit 900MHz network.
- All communication paths, including WiFi, 900Mhz Access Point, and 900 MHz store and forward are encrypted using enterprise class 128/256bit key encryption technologies.

Self-Healing High Density Oil Fields Network GE Wireless Utility Solutions Ethernet Utility WAN SONET/MPLS Store & Forward Site Up to 500 remotes per Cellular 900Mhz 3G/4G Oil & Gas network **Control Center** Store & Forward Store & Forward AP Site Site **Uplink Options** Remote

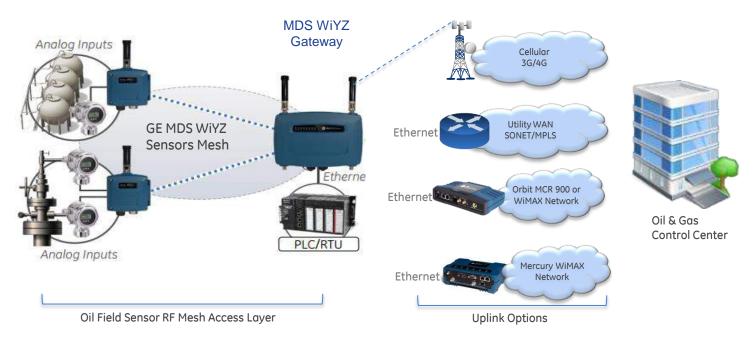
Orbit 900Mhz Self-Healing Mesh Tree


Application Characteristics

- Orbit's 900MHz technology allows for higher RF sensitivity and gain and an extension of more than 30 miles between any two hops (based on terrain). Its Store-and-Forward technology allows for the daisy chaining of up to 8 hops to further extend coverage.
- A combination of Store-and-Forward and Access Point functionality enables Orbit to form a self-healing tree mesh network with a scalability of up to 500 nodes per network to allow network coverage for large oil fields.

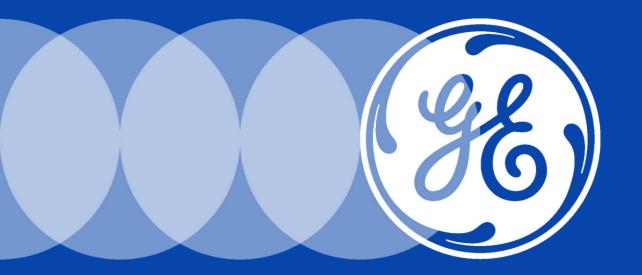
The Connected Oil Field

Application Characteristics


- A large oil field network can be layered for the purpose of organizing and optimizing traffic flow and distribution. The backbone network is where all aggregation traffic flows and it connects the access network as well as the uplink/backhaul network.
- In this example, a GE MDS Intrepid microwave solution is used for the backbone of an oil field forming a redundant Layer 2 ring with capacity exceeding 300Mbps. And an Orbit MCR 900MHz Network, WiMAX or an SD Master/SD Series licensed network could be used at the Access layer of the network
- 128 or 256 bit encryption could be enabled end-to-end over the RF links, and in addition IPSec VPN encryption can be enabled on top for added layers of security. Firewalling can be enabled at each Orbit site to provide traffic filtering for security and QoS optimization purposes.

imagination at work

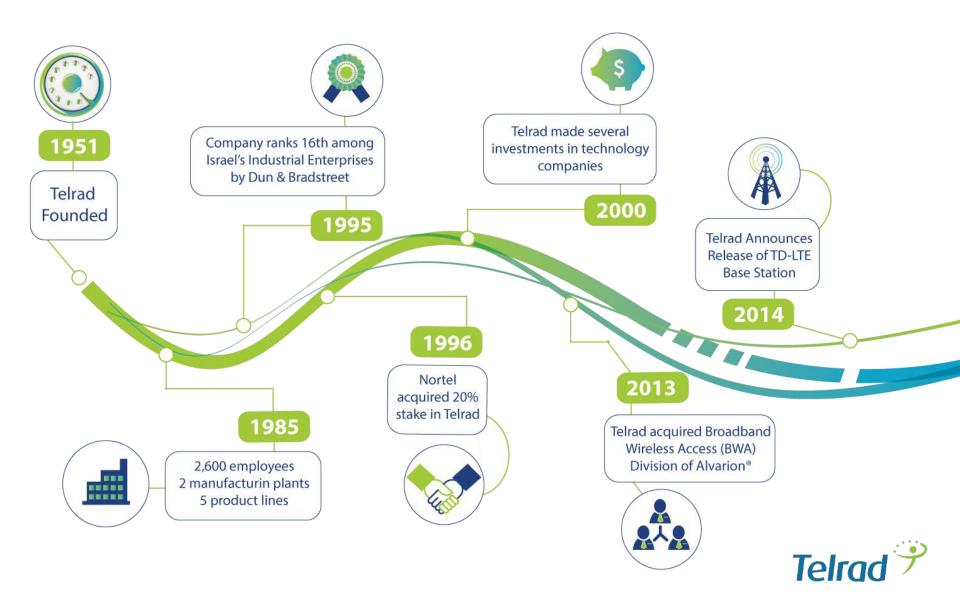
Extending The Network to the Sensor



Application Characteristics

- GE MDS WiYZ offers a gateway + remotes solution where remotes carrying I/O ports transport data over IP and an RF mesh network with a range of up to 1200 feet up to the WiYZ gateway. The gateway acts as an aggregation point for downstream sensors.
- In turn, the gateway connects upstream to an Orbit device for backhaul, or for enabling the creation of a core network for large scale oil fields.

BACKUP


The Importance of Standard 4G Solutions November 2014

Chris Daniels

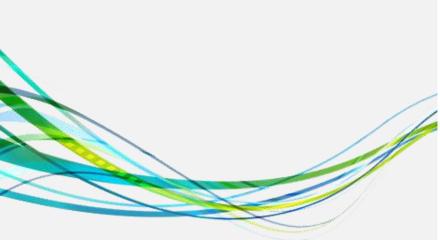
General Manager, North America

Telrad's 60+ Year Telecom Legacy

Applications

- Offshore drilling
- Exploration
- Pipeline monitoring
- Digital oil field

3



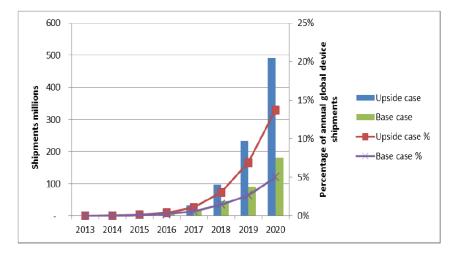
Requirements

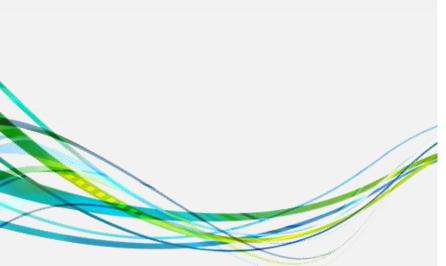
Wireless Solution Must ...

- Provide adequate throughput today with scalability for tomorrow
- Provide consistent performance
- Provide reliable connectivity in LOS and NLOS conditions
- Provide important features
 - Layer 2 services
 - Static IP capabilities
 - Uplink prioritization over downlink
 - Local data termination
- Be straightforward to install and maintain
- Allow for simple authentication
- Address industry specific requirements and standards

Proprietary or Standards Based?

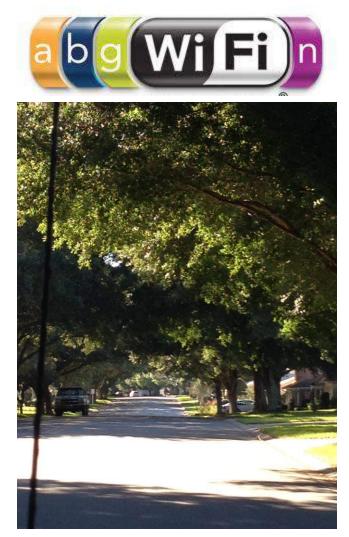
Proprietary 802.11x/802.16/etc...


- Upsides
 - High throughput and excellent performance in LOS conditions
 - Solutions targeted at specific applications
 - UL/DL is typically dynamic
 - Offer important features like layer-2 bridging, static IP, etc...
 - Straightforward to install and operate
 - Perceived as low cost
- Downsides
 - Poor performance in NLOS conditions
 - Non-standard solution
 - Single company driving the technology forward
 - Potentially stranded investment
 - No ecosystem of devices
 - Limited scalability
 - CAPEX may be low, but TCO is not always


Standards Based Solutions

- Global community driving the technology forward
 - Competition driving development cycles
 - Advanced feature set
- End-user ecosystem driven by a mass consumer market
 - Greater end-user device options
 - Cost decreases as the market grows
- Standards based interoperability protects your investment
 - Fate of your network is not tied to an individual company
 - Option to leverage multiple vendors

Forecast of Global Shipments - Band 42/43 Devices. Source: *Innovation Observatory.*



Which Solution is Best?

Standards Based WiFi

- Upsides
 - Standards based with a vast ecosystem
 - UL/DL bandwidth is dynamic
 - Excellent performance in LOS conditions
 - Initial CapEX is typically low
 - Easy to install and operate
- Downsides
 - Poor performance in NLOS conditions
 - Limited coverage
 - Limited scalability
 - No path to future technology
 - CAPEX may be low, but TCO is typically not

Telr

WiMAX 802.16e

Upsides

- Standards based, mature technology
- Highly scalable
- Ecosystem of devices for specific applications
- Solutions available that allow prioritization of the uplink
- Excellent performance in NLOS conditions

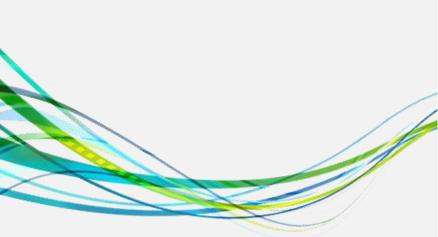
• Downsides

- Mature standard
- Comparatively low throughput per CPE due to 10MHz chipset limitation
- Requires a slightly more complex infrastructure than WiFi and proprietary

10

Chipset availability as we move to TD-LTE

Teli


TD-LTE (WiMAX Advanced)

- Upsides
 - Wider channels provide greater capacities
 - Scheduled protocol provides predictable latency
 - Sub 20ms latency
 - Advanced feature set
 - Excellent performance in NLOS conditions
- Downsides
 - 3GPP is primarily a mobile standard, fixed is an afterthought
 - Most LTE solutions are focused on tier-1 mobile networks and HetNet
 - Authentication is extremely complex
 - Core is extremely expensive
 - Layer 2 services, static IP, and other features are not addressed by 3GPP

11

SIM cards required in all CPE

What To Look For In An LTE Solution

Telrad's Focus is Fixed LTE

- Standards based, but focused on fixed
- Layer 2 bridging capability
- True static IP
- Simplified and cost effective core
- AAA integration
- DHCP server integration
- Appropriate level of mobility

BreezeCOMPACT

- ✓ Telrad SDR Technology
- ✓ Dual Sector / Carrier
- ✓ Embedded EPC
- ✓ Flexible site and spectrum topologies
 - ✓ Wide band tunable Radio (up to 300Mhz)

14

- ✓ 2.3, 2.5, 3.5-3.7, and 5GHz bands
- ✓ 4x4 MiMO
- ✓ 3GPP Releases 9, 10, and beyond

Telrad EPC Advantage

- Telrad EPC solution provides simplicity and cost effective pricing
 - Smooth migration for WiMAX services enabling advanced IP and L2 (Eth/ VLAN) services as was supported in WiMAX
 - Interworking with AAA system using Radius protocol (similar to WiMAX) provides simplified integration into the operator's back-office systems
 - Telrad EPC-integrated HSS (suitable for small-scale networks)
 - Full-scale interworking with Operator's HSS 3rd party vendor
 - Pays as you grow strategy with scalable cost effective MC-EPC or embedded EPC

15

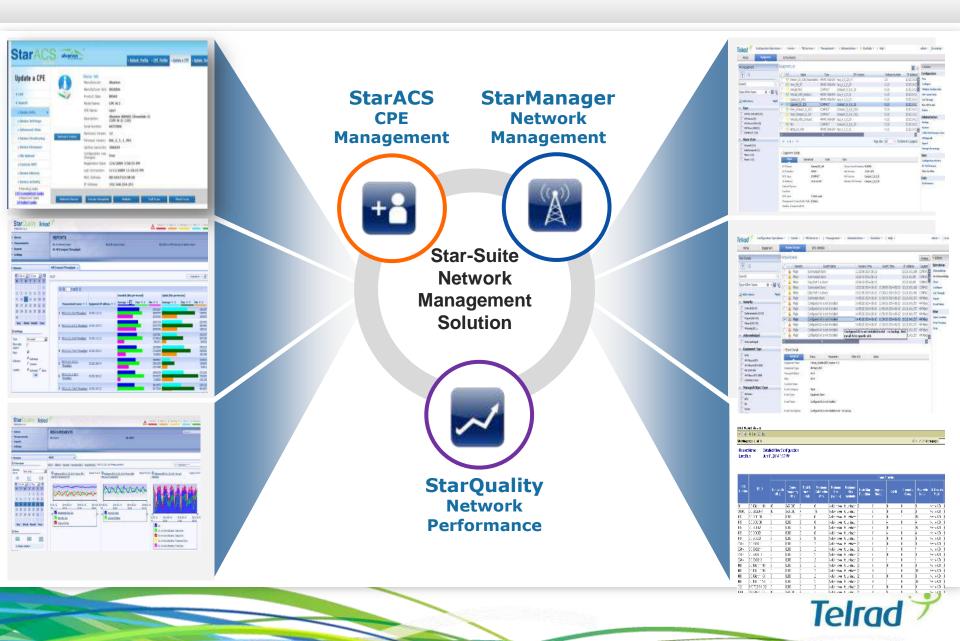
Telr

CPE7000 CPE Portfolio

Specifications				
Data and Voice Capabilities	1 Data + 2 Voice lines			
Fraguanay	3.4-3.8GHz (B42, B43)			
Frequency	2.3-2.7GHz (B40, B41)			
Radio Configuration	1TX x 2RX			
Transmit Dowor	27dBm WiMAX			
Transmit Power	23dBm LTE			
Weight	1.2 kg			
Internal Antenna Gain	15dBi			
Power Consumption	7 W			
Environmental standard	IP67			

3GPP limitation: Tx Power of 23dbm (WiMAX is 27dbm)

16


SIM Card is Provided

- SIM cards may be purchased together with CPE7000
- Beneficial for small-medium operators and enterprise
- Not a requirement for tier-1 operators who purchase customized SIM cards

Star-Suite Network Management Solution

18

Smooth Transition from WiMAX to LTE

- Operators not sure how to make transition
- Telrad offers a versatile, scalable transition to LTE
 - Leveraging a standard that enables operators to run both WiMAX and LTE concurrently
- WiMAX operators can offer broadband services using their current platform – and introduce LTE slowly (or quickly) as ecosystem matures
- Using an SDR, dual mode solution operators can offer fixed, nomadic and even mobile support to their subscriber base

Radical Broadband Wireless Innovation. It's what we do.

19

Teli

The Telrad Advantage

- LTE standards base solution, with a focus on fixed
- Superior NLOS performance
- Excellent capacity for both LOS and NLOS scenarios
- Consistency in service offering to your customers
- High level of scalability
- SDR technology provides a nearly future proof solution

20

Tel

- Smooth migration from WiMAX to LTE
 - Existing 802.16e networks
 - Proprietary solutions based on 802.16e

LTE Products

	Product	
	Base stations	Compact1000 (3.4-3.7, 3.6-3.8 GHz) Compact2000 (3.4-3.6 GHz) Compact3000 (2.5-2.7 GHz) Compact3000 (2.3-2.4 GHz)
Tetrad ?	CPE	CPE7000 (3.4-3.8GHz) CPE7000 (2.3-2.7GHz)
	SIM Card	Telrad SIM
	Telrad EPC	MME, SGW, PGW
HSS/ AAA	HSS	3 rd Party HSS or Internal HSS in EPC
	NMS	LTE NMS including : Configuration management, performance monitoring and CPE management ACS

Thank You!

www.telrad.com

Delivering Effective 4G Broadband Internet to Remote Oil & Gas Production Facilities

Presentation

For

WiMAX Forum at Oil & Gas Comm

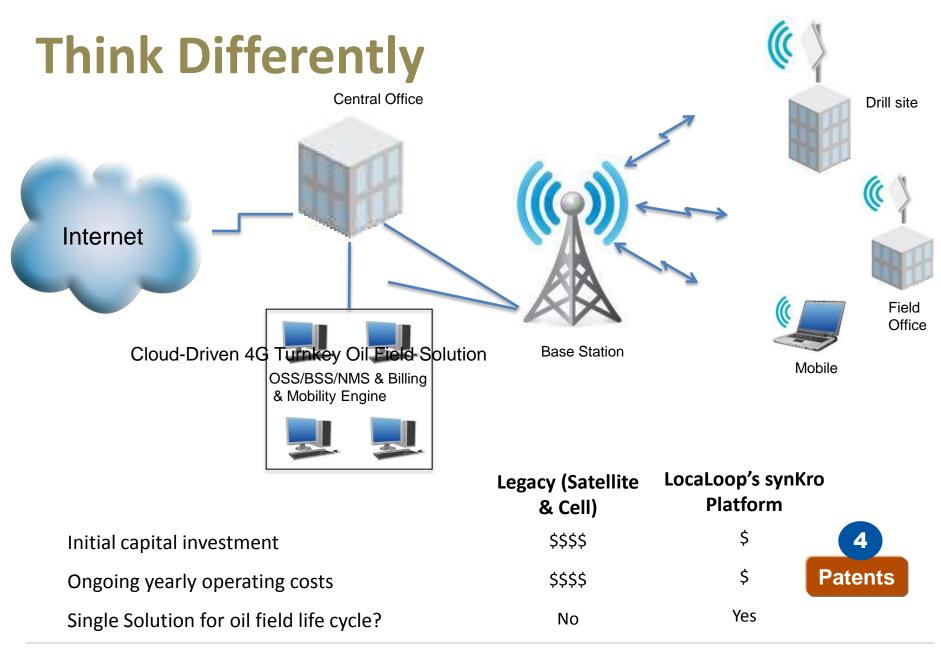
November 5, 2014

Carl-Johan Torarp Founder/Chairman/CEO cjtorarp@localoop.com 612-327-3303

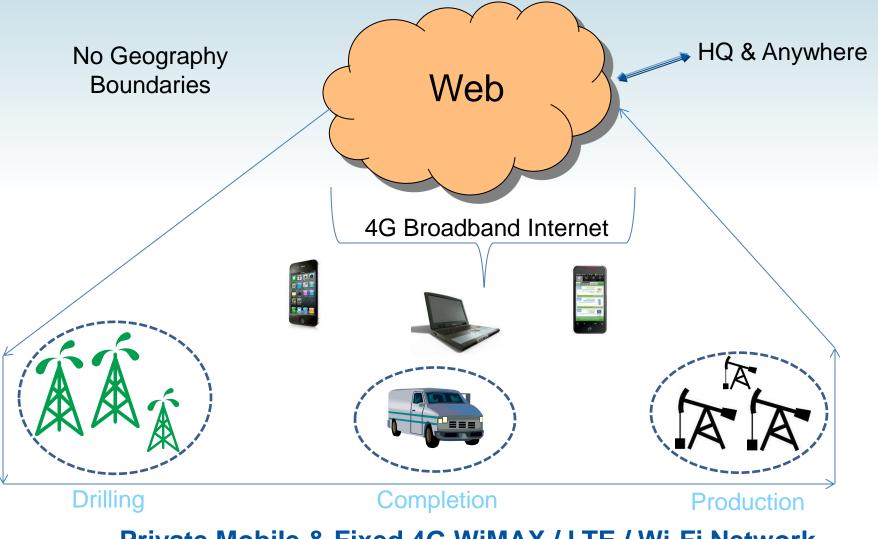
Today's Reality

- Speed to market & profitability hampered by legacy communication technology
- Fragmented systems from price-gouging vendors no interoperability and low accountability
- Inefficient and high-latency inhibits real-time data transfer / reporting / monitoring
- No <u>single</u> cost-effective solution across the entire well site's life cycle (exploration through production)
- Web enabling of field operation not viable
- Worker's well-being and quality of life a distant and low priority

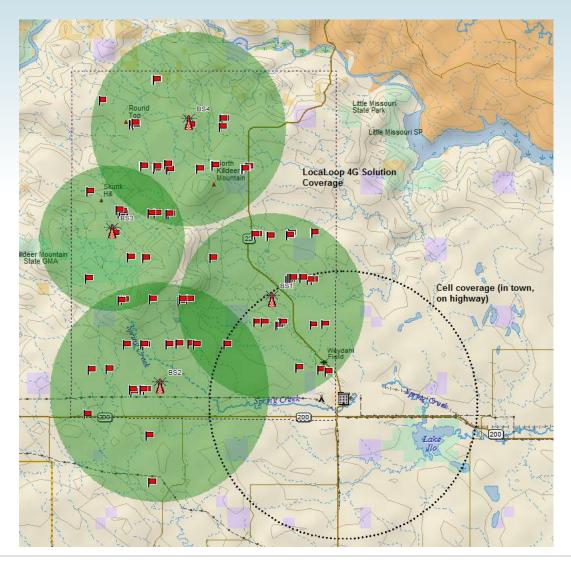
The Four Key Communications Infrastructure Challenges in the "Oil Patch"


- 1. Cost Effectively deploying and managing broadband services
- 2. Need for high-performing, secure, reliable fixed <u>and</u> mobile services
- Scaling services up and down based on needs of the business (exploration through to production)
- 4. Insuring worker satisfaction and on-site quality of life

LocaLoop & Service Providers: Meeting the Challenges


- 1. Cloud-based SaaS / IaaS business and operational intelligence, real time, 24x7
- 2. Nimble and standards-based 4G local infrastructure located where it's needed
- 3. Single solution over the oil field's life cycle
- 4. Seamless fit from business needs to personal life-style communications

Internet Protocol Data Umbrella For All Field Operations



Private Mobile & Fixed 4G WiMAX / LTE / Wi-Fi Network

Delivering 4G to Remote Oil Fields ©2014 LocaLoop Inc.

4G Solution Deployment

- Legacy cell provider's focus are towns and highways
- LocaLoop's 4G focus is where it's needed!
- Each location has broadband service <u>and</u> nextgeneration Wi-Fi connectivity around the site
- Fiber connections to the Internet and the cloud
- Cloud based business and network management 24x7 from anywhere

Life-cycle Services

- Drilling
 - Intensive 24x7 work on-site. High capacity Internet connectivity
- Completion
 - High capacity services remains
- Production
 - Long term connectivity with security, reliability and low maintenance overhead
- Plus Wide Area Mobility
 - Access to broadband Internet within the coverage area at all times...on or off the site.

LocaLoop Service Model For Service Providers

What LocaLoop does:

- Provide complete 4G turnkey business system
- Ready to go SaaS/laaS synKro cloud platform
- Pre-deployment RF planning and engineering, training and tech support
- 4G infrastructure & installation
- Manage the network via automated NOC
- Oil & Gas market adapted hardware for consistent performance and cost optimization
- Lease financing

What service providers do:

- Obtain frequency license
- Facilitate build-out with your local contacts and presence
- Establish & staff in-territory for endpoint installation and support
- Manage the day-to-day operation of the network via the synKro application platform

Consumer Retail vs Oil & Gas Services

Business Models

Existing: Consumer Business Model

 Many individual accounts, prepaid service month-to-month New: Oil & Gas Business Model

 Service providers have long term contracts with operators

Both Built on a Proven Business Model

The Service Provider: Creates revenue from services, owns and operates the network, installs and manages endpoints

LocaLoop, Inc: Revenue from SaaS / IaaS fee per endpoint along with its Intelligent Capacity Services™

LocaLoop's synKro SaaS / IaaS Business System

Existing: Consumer Model

- New: Oil & Gas Model
- Consumer's "MyAccount" portal (B2B2C)
- Operator's corporate portal (B2B2B)

Both Built on a Common SaaS / IaaS Platform in Production

Service provider: SaaS / IaaS portal for business and network management

LocaLoop: Sysop for customer and network management

Consumer – Web Portal

- Allows individual consumers to manage their account
- Demographic (Name, address, etc)
- Payment (Credit card details)
- Services & Devices
- Secure messaging to service provider

Operator - Web Portal

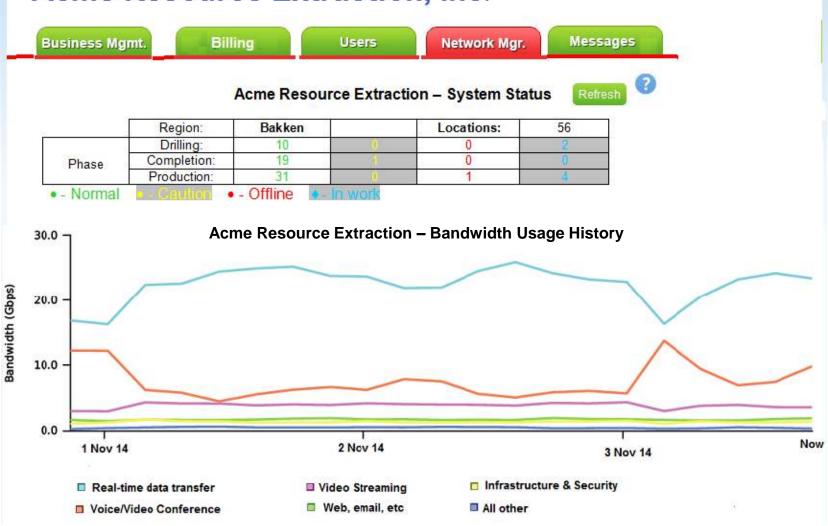
- Allows operators to view and manage their account
- Business Information: Invoices & Payments
- Locations and Application Usage
- Order Management (moves, adds, changes)
- Secure messaging to service provider; trouble ticketing

Operator's Business Portal

Operator's Business Portal provides on-line web access to the service and payment status and history with the service provider.

Sync with th	e Cloud		lling	Users	Network	Mes	sages
	Sea	rch Date View: All		Export .		Reset View	? Show Customizatio
Drag a column h	eader here to gi	roup by that column. Click a column header	to sort in ascending) / descending orde	r. See totals on t	he bottom of the	grid.
Transaction ID	Work Order	Line Item	Create Date *	Submit Date	Amount	Tax	Location
2199869501	C2389	Install Pad	10/15/2013	10/15/2013	350.00	0.00	Wilder45A
2199869505		DrillingServices	10/15/2013	10/15/2013	1.200.00	0.00	JamesCreek6
2199870200		Site Work - Dillable	10/15/2013	10/15/2013	945.78	0.00	(FleId)
2199870200		Site Work - Billable	10/15/2013	10/15/2013	1,245.34	0.00	TenMile23
2199870200		Site Installation	10/15/2013	10/15/2013	500.00	0.00	MandyRanch36
2199870200		DrillingServices	10/15/2013	10/15/2013	1.200.00	0.00	PeanutValley45S
2207168890		Production Services	10/15/2013	02/21/2014	350.00	0.00	CobalfCreek843
2207168890		Production Services	10/15/2013	02/21/2014	350.00	0.00	Oberstar249
2207168896		Production Services	02/21/2014	02/21/2014	350.00	0.00	(Field)
2207168896		Site Installation	02/21/2014	02/21/2014	500.00	0.00	PeanutValley90N
2207168900		DrillingServices	02/21/2014	02/21/2014	1.200.00	0.00	ArtisanMtn983
2207168900		Production Services	02/21/2014	02/21/2014	350.00	0.00	JustinFarm234
2207168907		Site Work - Billable	02/21/2014	02/21/2014	1,245.34	0.00	TenMile23
220/20030/					945.78		(Field)

Consumer's Portal


Provides on-line web access to payment history, next charge date, credit card information, services and secure messaging to service provider's customer support staff.

synKro	Welcome back Joe Miner				
In Sync with the Cloud	Next charge date is 11/25/2014				
in Sync With the cloud	My Profile My Services	My Devices My Payments	My Messages		
▶Home ▶Services ▶FAQ	Summary	Date	Amount	Frequency	
►My Account	Media streaming	10/25/2014	5.00	Recurring	
	Fixed outdoor modem rental Unlimited Premium Fixed	10/25/2014 10/25/2014	7.00 54.00	Recurring Recurring	
▶Log out	Oninnited Fremium Fixed	10/25/2014	54.00	Recurring	

Operator's Network View

Acme Resource Extraction, Inc.

Service Provider – Network

- Network Status Dashboard
- Detailed Network View & Management
 - Regions, Sites, Base Stations and Sectors
 - Coverage mapping and localization
- Intelligent Capacity Services[™]
 - Bandwidth Consumption

– Bandwidth Capacity Order Management

Network Dashboard

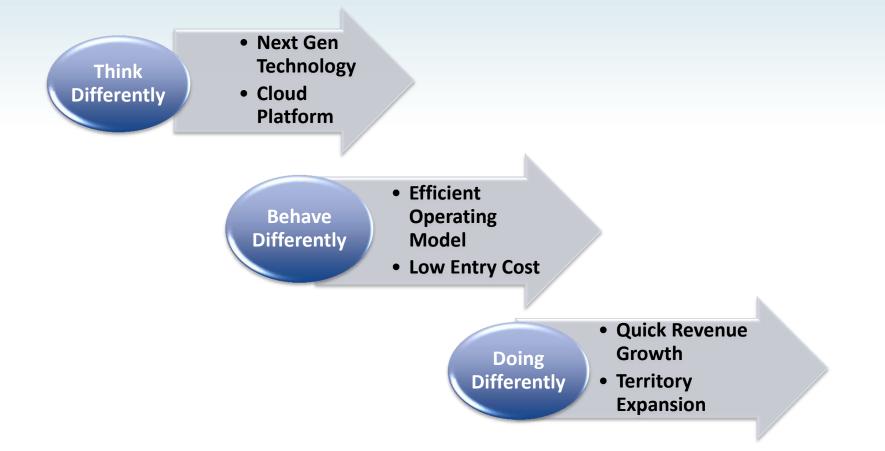
Active Endpoints 174 as of 07:15 AM, 01 Nov 2014

Base Station Status as of: 07:15 AM, 01 Nov 2014

Region Name	Site Name	Base Station Name	BSID	Active Endpoints	Status
Bakken	BS1-Bice	BS1-Bice	45B2	44	ONLINE
Bakken	BS2-Chase	BS2-Chase	0C31	24	ONLINE
Bakken	BS3-SkunkHill	BS3-SkunkHill	E7A0	42	ONLINE
Bakken	BS4-SpringCreek	BS4	3421	39	ONLINE
Bakken	Williston Central	WC_North	96C2	25	ONLINE

Note: Operation and Function covered under US patents #7,392,050 & #8,243,739 © LocaLoop, Inc. All Rights Reserved.

Service Provider Portal - Network



Business Models with LocaLoop

- Multiple business models
 - Joint ventures with LLI
 - Independent Service Providers
 - Oil Field Service Companies
 - Captive (oil company owns the network)
 - Service provider to both Consumers and Oil & Gas field operators

Getting it Done in Partnership with LocaLoop

Thank You

Delivering 4G to Remote Oil Fields ©2014 LocaLoop Inc.

Demo network

www.synkro4g.us

Login: NickSAdmin / Synkr#o

Region – Bakken

Subscriber

Joe Miner

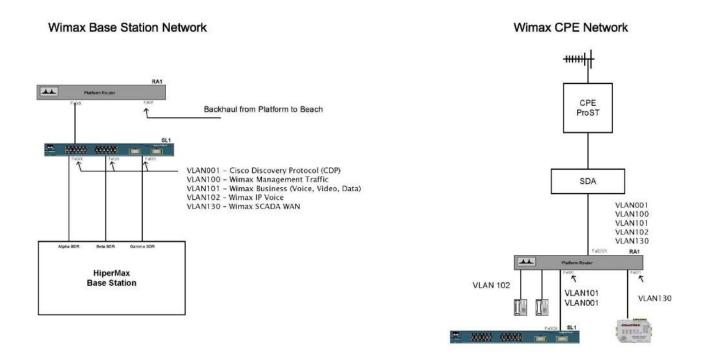
Joeminer / Oilpatch701

SESWC4166 Asssociated CPE

Project Overview Gulf of Mexico Wimax

Al Sinopoli, P.E, RF Engineering Architect Oilcomm 2014, Houston, TX

© 2014 Chevron USA Inc. All Rights Reserved


Gulf of Mexico Wimax Strategy

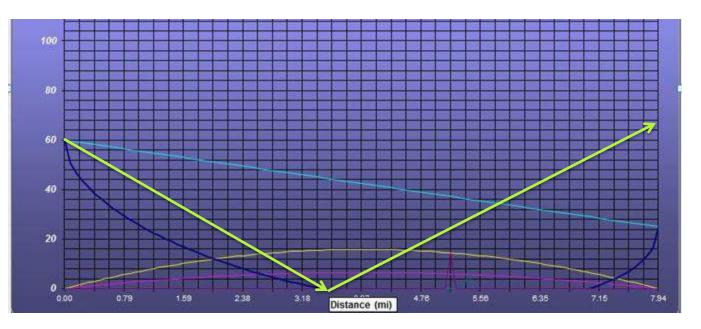
- Provide area-wide Wimax coverage to Chevron operating areas within the US Gulf of Mexico
- Replace lift-boat and drill-ship point to point connectivity with Wimax connectivity
- Replace low speed last mile links for small platforms with Wimax connectivity
- Use newly acquired licensed 700 MHz spectrum for sites > 12 miles from coastline
 - 17 Sites, including planned deepwater platforms
- Use the then-new (2008) "pseudo-licensed" 3.65 GHz spectrum for sites < 12 miles of coastline (areas where our 700 MHz licenses were not valid):
 - 9 Sites, including our shorebase facilities
- Use common equipment vendor for both frequency bands. TDD on both bands!
- Use the 802.16D standard, due to limited mobility requirement and long distance profiles
- Create a test laboratory to stage equipment and CPE's for deployment
- Budgeted \$2.5MM, not including the \$1.6MM paid the FCC for 30 MHz of GOM spectrum, for capitalized materials and labor

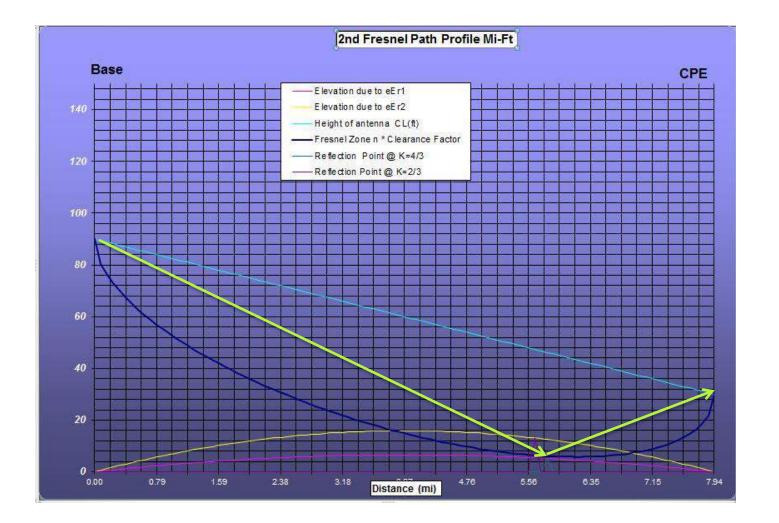
Gulf of Mexico Wimax Simplified Network Connectivity

VLAN Separation of Services (Voice, Data, Scada)

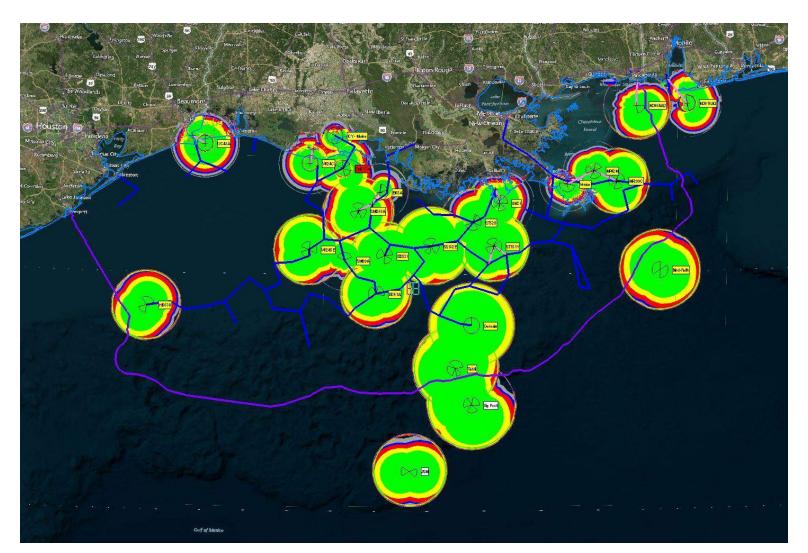
© 2014 Chevron USA Inc. All Rights Reserved

Gulf of Mexico Wimax RF Design


- Leveraged EDX SignalPro for predictive analysis
 - Signal Strength
 - Interference
 - Capacity
 - Diversity planning
- Performed Site Surveys at each location to generate accurate Bill of Materials and realizable designs
- Complied with hazardous area classification requirements and worked with each field to avoid operational issues (crane loading areas, expansion plans, etc.)
- Took advantage of flexibility in mounting of wimax equipment to balance environmental versus RF considerations (a combination of outdoor and indoor deployments)



- Reflections from water cause destructive interference
 - Plane of reflection: Vertical Plane
 - Due to rapid sea-state changes, ground elevation changes complicate the problem
 - Mitigate by using Mode A
- To solve, heights must be engineered to "bury" the reflection


Gulf of Mexico Wimax Over-Water Diversity: Why MIMO Mode A is a Must

Gulf of Mexico Wimax Predictive Coverage

Gulf of Mexico Wimax System Statistics: 2014

Coverage Area includes 22% of the U.S. Gulf Of Mexico

• Approximately 27,500 square miles

Approximately 250 CPEs in place, with about half in use at any time

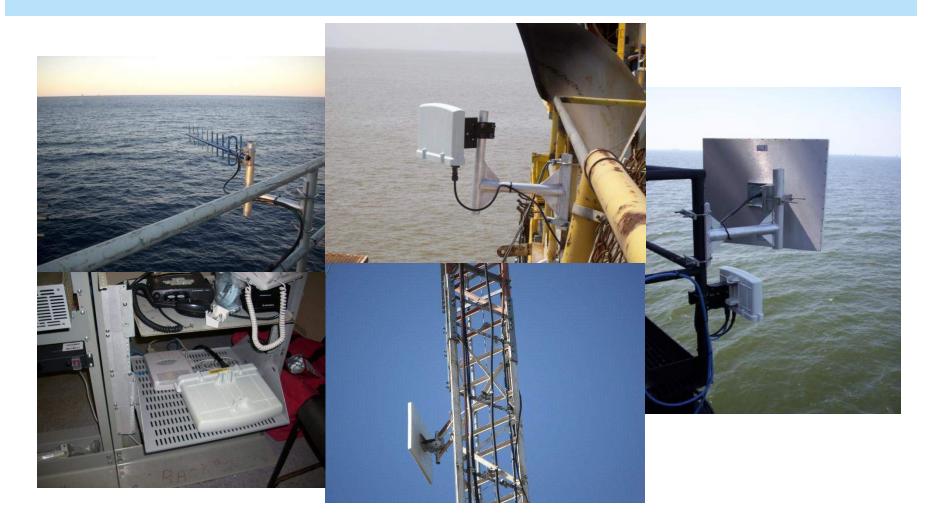
Uplink and downlink busy hours different

- Scada data limits uplink rates
- Business data/Internet limits downlink data rates

Spectral efficiency approximately 2:1 (10 MB per 5 MHz carrier)

Gulf of Mexico Wimax Project Timeline

Pre-deployment	Deployment	Post-Deployment
 700 MHz licenses obtained at Auction (Feb 2008) Conducted deployment trial with Airspan Networks (June 2008) Entered into Procurement Agreement with Airspan Networks (November 2008) Entered into Production Agreement on 700 MHz equipment with Airspan (November 2009) RF Engineering and drawing packages completed for each site (Continual) 	 ✓ Began 3.65 GHz deployments (November 2008) ✓ Received 700 MHz radio equipment (May 2010) ✓ Began 700 MHz deployments (May 2010) ✓ Completed 3.65 GHz deployments (May 2011) ✓ Completed 700 MHz deployments (November 2011) ✓ CPE Installations completed throughout the timeline 	 ✓ Financial lookback completed (April 2012) ✓ Service center monitoring via Airspan applications and the use of Solarwinds SNMP monitoring solutions fully implemented (December 2011) ✓ Continuing to operate at a projected savings of over \$570K per year versus prior systems


Gulf of Mexico Wimax Base Station Photos

Gulf of Mexico Wimax CPE Photos

Gulf of Mexico Wimax Major Lessons Learned

- RF and network engineering attention to detail, including the use of EDX for radio planning, were key enablers to a reliable system
- Space diversity and low Signal-to-Noise key to maximize throughput at a given reliability
- Seasonal propagation variations reduce output on certain links
- Attentive site survey critical to reducing installation issues
- Backhaul stability and network trunk readiness will affect system performance
- Service profiles for CPEs need to be adequately planned and configured
- Supervision and verification of installation in order to assure things are done right is critical

Gulf of Mexico Wimax Major Lessons Learned

- Subscriber and operational expectations should be set at the onset.
 The reliability of a wimax or any multipoint system will never be greater than that of a properly engineered point-to-point system.
- While the budget was slightly exceeded (we spent \$2.8M), the return on investment was more than double the original estimate. The system paid for itself after 2 years in operation, when factoring in drillship operation savings.
- Wimax is successful if implemented properly and adequately supported by a core team
- Consider migration plan as technology changes. Current product is end of life on Dec 31, 2014 and conversion to newer system in 2016 is being planned.

RUGGEDCOM WIN

802.16e WiMAX Application: Oil & Gas

Unrestricted © Siemens AG 2014 All rights reserved.

siemens.com/ruggedcom

Special Requirements of the Oil & Gas Market

Remote deployments – reliability and long product life cycles - not easy to upgrade or replace hardware

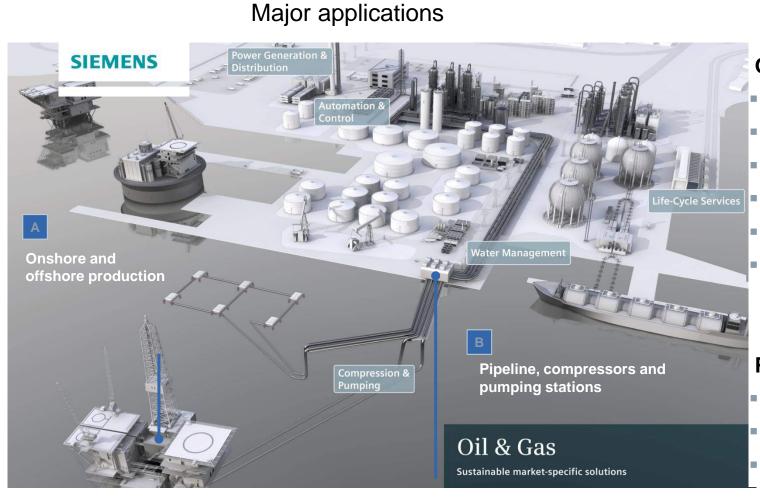
Rugged Environment - rain, salt, humidity, high temperatures, low temperatures, vibration, etc.

Hazardous locations – depending on deployment model, ATEX / IECEx / Class 1 Div 2 may be required

Security - Infrastructure is a prime target for hackers

Simplified infrastructure - IT/Telecom groups share access. A simplified topology and a layer 2 approach work best

The environment and goals of a wireless network for oil and gas applications is unique



Unrestricted © Siemens AG 2014 All rights reserved.

Page 2 2014

Wireless applications available for production and pipeline market segments

Onshore and offshore production

- Wireless connection of mobile applications
- Wellhead monitoring and control
- Gas field control and monitoring
- Rig external communication (radio)
- Rig power management & monitoring (SCADA) Rig internal communications

Β

Pipeline, compressors & pumping stations

- **Pipeline SCADA**
- Data aggregation in rugged environments
- **Process analytics**

2014

WiMAX for Private Network wireless communications

A proven point-multipoint wireless solution meeting the needs of demanding customer environments in a standards-based approach

- Established Ecosystem Non-proprietary and interoperable
- Range / Throughput Broadband capacity over several miles
- Scale Synchronized TX/RX intervals eliminates selfinterference
- Quality of Service Configurable service flows to customize for multiple applications over a single infrastructure
- Security- Must meet the needs of Critical Infrastructure customers

Unrestricted © Siemens AG 2014 All rights reserved.

WiMAX QOS - Managing multiple services/ application types

	CIR	MIR	Jitter	Latency	QoS Goal
SCADA	Yes	No	No	No	Reserve BW and prioritize
Voice	Yes	No	Yes	Yes	Real time capability
Video	Yes	No	Yes	Yes	Real time capability
Control data	Yes	No	Yes	Yes	Nail up low BW
Field Workers	No	Yes	No	No	Set a max BW to not effect other apps

Quality of service that controls bandwidth utilization

Unrestricted © Siemens AG 2014 All rights reserved.

Page 5 2014

The role of WIGRID and the SEWG

Purpose - Leverage the ecosystem of WiMax **standards-based** equipment, but tailor it to the needs of energy customers

Provide - Ethernet based systems with distributed architectures.

Provide - More data going **upstream** than in a conventional ISP model

Provide - Longer range required for geographically dispersed networks

Provide - Frequency bands which can be used by private companies (5.8, 3.65 GHz and some licensed freq bands)

Drive - interoperability around this "energy profile"

Providing the benefits of 4G network technology optimized for Energy's needs

Unrestricted © Siemens AG 2014 All rights reserved.

Page 6 2014

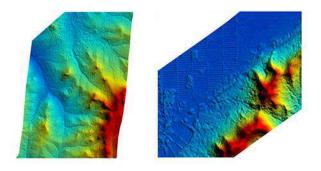
Oil/Gas Exploration - Application Challenges

Marine Seismic sea floor mapping

- Mobile environment: Master/Streamer ship communication to supply & work vessels
- Airblast collection of data
- Changing topology, 20-40 km distance requirement
- Mapping resolution broadband needed

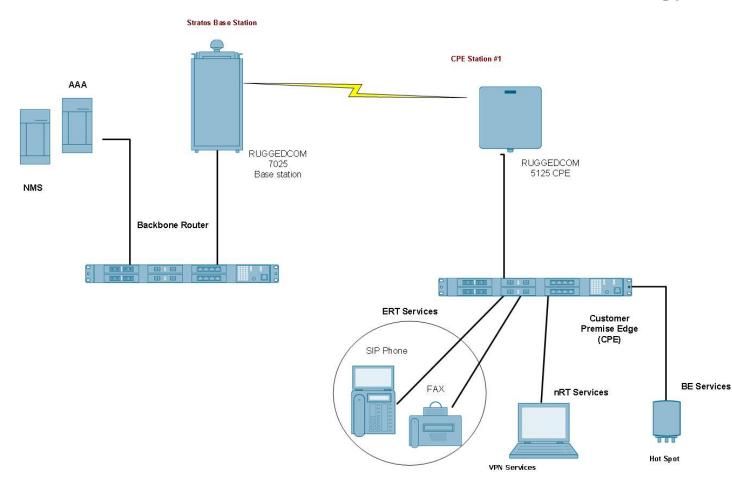
Extremely harsh environment

- Corrosive salt water
- Hazardous location
- Connection over water, heavy multipath conditions


2014

Page 7

RUGGEDCOM WIN WiMAX Solution


- Omnidirectional base station on the master vessel
- 2.5 GHz freq selection- uses high TX power base station
 - Capable of 40km
- Omnidirectional Subscriber/CPE radios
 - Minimize antenna aligning
- Mobile handoff as needed NO ASN gateway
- Secure Layer 2 transport:
 - Production data mapping results
 - VOIP to/from slave vessels
 - Video to/from slave vessels
 - AAA authenticated

Solution Architecture

RUGGEDCOM WIN wireless broadband technology

- Standards-based WIMAX system in licensed, band supporting nomadic and mobile
- Broadband rates over long distances.
- Provides robust equipment for rugged conditions.
- OFDMA based to provide reliable connections over water.
- Up to 40 Km range.
- Multi-tiered service with guaranteed QoS.
- Low, controllable latency

Unrestricted © Siemens AG 2014 All rights reserved.

Page 9 2014

Summary

The need for communication technology in oil field applications is increasing at a rapid pace

The remote and rugged nature of the communications means implementation of long technology lifecycles

WIMAX is a standard which is well suited to meet the range, security and throughput needs of the oilfield

WIGRID is establishing interoperability around frequencies and use cases required for the energy market

Contact

Mike Dalton Regional Sales Director, Wireless Siemens Industry, Inc. NAM RC-US I IA SC FA Phone: 480-282-8651

Mobile: 480-428-9765

Email:

mike.dalton@siemens.com

Glen Sprouse

Regional Sales Manager - Industrial Siemens Industry, Inc. NAM RC-US I IA SC FA

Phone: 770-642-1660

Mobile: 678-896-5299

Email:

glen.sprouse @siemens.com

www.usa.siemens.com

www.siemens.com/ruggedcom

Unrestricted © Siemens AG 2014 All rights reserved.

Copyright 2014 WiMAX Forum. All rights reserved

Background on 3650 – 3700 MHz

• 2005 – FCC Report and Order:

-Open the 3650 - 3700 MHz band

- -For terrestrial wireless broadband operations
- 2007 November 17
 - -Start date for filing applications
 - -Nationwide non-exclusive Licenses

Four Steps to License

the ULS - (FCC Universal Licensing System)

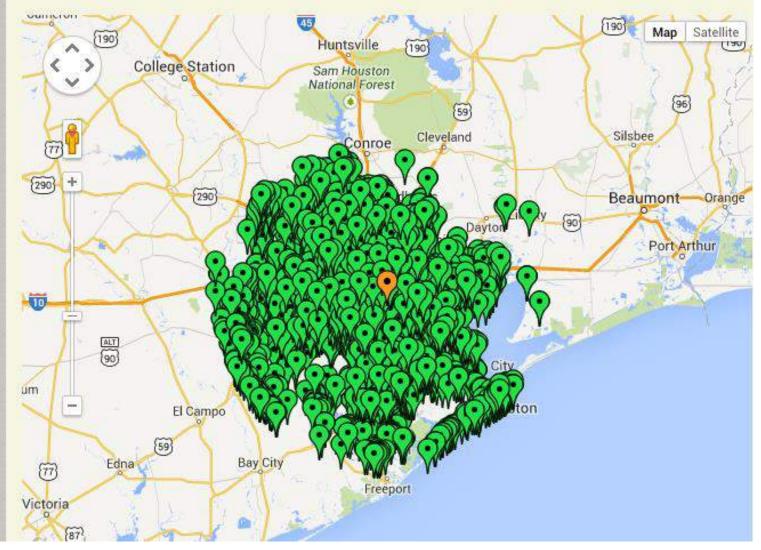
- \star Examine the ULS for Nearby Stations
 - Protected incumbents Federal & Non-Federal
 - 150 km circular protection zones established around each grandfathered Fixed Satellite Service (FSS) Earth station

+ Use FCC-certified equipment

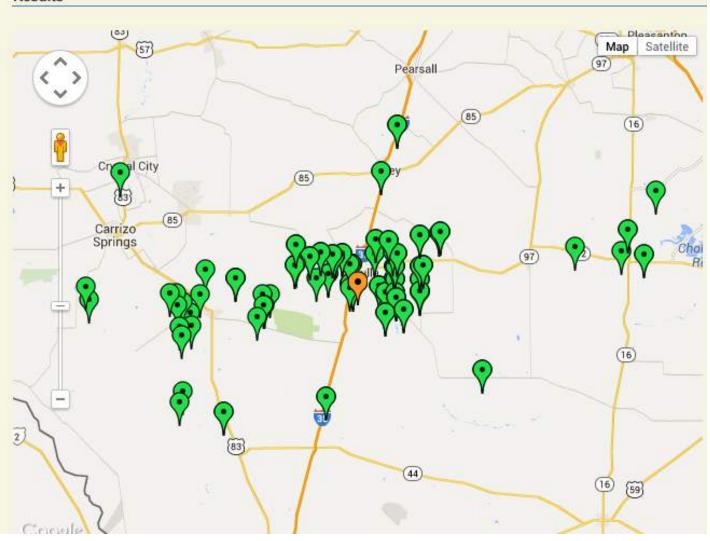
- Fixed, base and mobile equipment operating in the band must incorporate a "contention-based protocol"
- \star Register each fixed and base station using ULS
 - Use is not authorized until base station is registered

Unrestricted or Restricted Operation

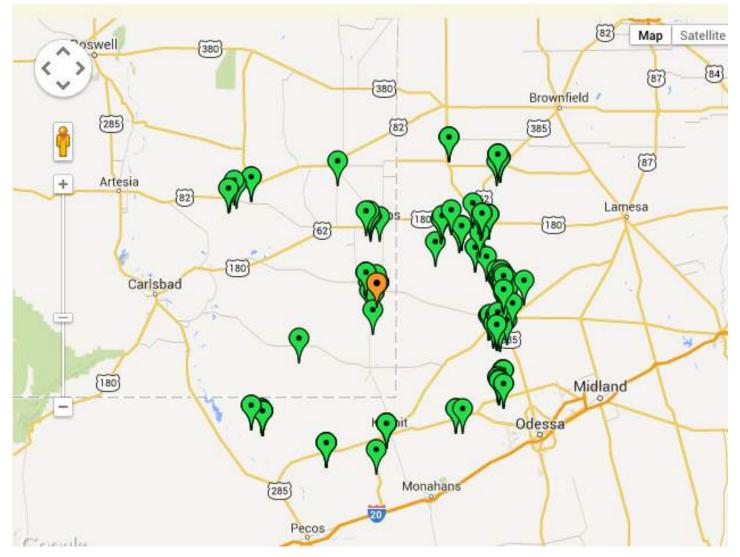
- Unrestricted contention protocols are broadly compatible and function to prevent interference with other, dissimilar contention technologies on the market. Equipment using an unrestricted protocol can operate on all 50 megahertz (3650-3700 MHz) Limited spectrum
- Restricted contention protocols prevent interference with other devices incorporating the same or similar protocols.
 Equipment using a restricted protocol can operate only on the lower 25 megahertz (3650-3675 MHz)


Interference - Section 90.1319(d)

- FCC left it to licensees to work it out on their own
- Licensees should examine this database before seeking station authorization, and make every effort to ensure that their fixed and base stations operate at a location, and with technical parameters, that will minimize the potential to cause and receive interference.
- Licensees of stations suffering or causing harmful interference are expected to cooperate and resolve this problem by mutually satisfactory arrangements.



Near OilComm


Catulla Springs, TX

Copyright 2014 WiMAX Forum. All rights reserved

Hobbs, NM

Top 10 States - Base Stations

Texas	12904
California	3409
Illinois	1927
Oklahoma	1757
Ohio	1680
Missouri	1644
Utah	1416
Nebraska	1224
New Mexico	1218
Michigan	1026
Puerto Rico	1026
Gulf Mexico	253

7 Years Later

- About....
 - 2600 active nationwide licenses
 - 45,200 base stations deployed
 - 3 or 4 base stations for 360 degree coverage
 - 22,000 unique base station locations
 - WISPs
 - Municipal, County
 - Utilities
 - Oil & Gas

Summary

- Adoption Rate is low
 - Contention, QOS
 - Interference FUD
- Difficult to determine who your neighbors are
 - Use Comsearch's free tool
 - http://www.comsearch.com/interactive_solutions/3650MHz_Quick_Look/ overview.jsp
- Few areas have contention
 - Mostly competing WISPs
 - Adjacent Municipalities
 - Lot of room in band for more users
- Development has slowed

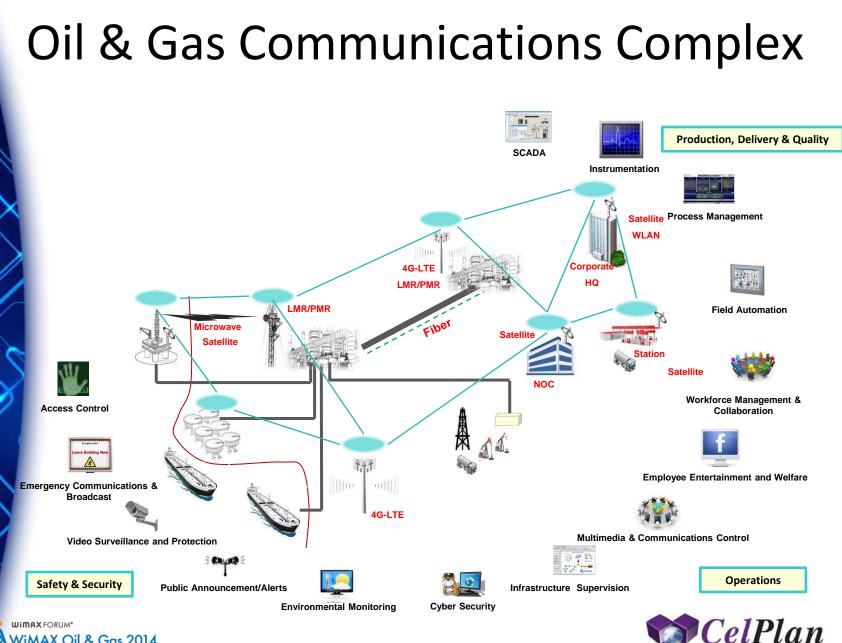
Spectrum in Oil & Gas Applications

WIMAX FORUM* WIMAX Oil & Gas 2014 @ OilComm HOUSTON, TX I NOVEMBER 5

All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited.

About CelPlan

- Employee owned enterprise with international presence
 - 20+ years in business
 - Headquartered in Virginia
 - 450+ employees
- Leading planning, design and optimization software tools for all applications and wireless network technologies
- Specialized engineering, planning, design an optimization services
 - Proven and demonstrable worldwide WiMAX and LTE network planning and deployment expertise
- Field measurements and RF propagation characterization
- RFP preparation, vendor selection and deployment support
- High-level Consulting
- Technology Training
- Managed Services



WIMAX FORUM*

WiMAX Oil & Gas 2014

© OilComm HOUSTON, TX I NOVEMBER 5 All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited.

🔉 WiMAX Oil & Gas 2014

@ OilComm HOUSTON, TX I NOVEMBER 5 All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited.

Wireless Global

Growing need for Spectrum

- Multitude of applications driving ever-growing bandwidth utilization
 - Satellite: offshore, onshore remote operations, back-up
 - Point-to-point: terrestrial microwave links
 - LMR/PMR/4G-LTE: ground mobile communications
 - WiFi: WLAN

WIMAX FORUM®

WiMAX Oil & Gas 2014

- Mission critical applications require spectrum dependability
 - Licensed, coordinated spectrum
 - Unlicensed spectrum limited to provisional and temporary use

Comm HOUSTON, TX | NOVEMBER 5 All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited.

Efficient Use of Limited Resources

- Proper design of wireless networks
 - Air interface technology and frequency bands are fit for purpose
 - Coordination and coexistence with neighboring bands and users
 - Scalability, as network and usage grow
 - Integration between different networks and applications
 - Geography
 - Technology
 - Environment

WIMAX FORUM®

WiMAX Oil & Gas 2014

- Adequate design tools
 - Air interfaces and technology are increasingly complex
- Knowledgeable and experienced design and engineering support
 - Air interfaces and technology are increasingly complex!

OilComm HOUSTON, TX 1 NOVEMBER 5 All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited.

Case 1: Offshore - Petrobras (Brazil)

- 1,500+ point-to-point microwave links
 - Licensed and coordinated ITU bands: 6, 7, 8 GHz and others
 - Multiple air-interface technologies
 - Provisional WiMAX unlicensed links: 5.8 GHz
 - ANATEL (Brazil's FCC equivalent) centralized frequency utilization and coordination database (STEL)
 - Point-to-Multipoint
 - WiMAX: 1.5 GHz band, TDD, 5 MHz channels; 3.5 GHz band pending regulatory approval)
- LMR/PMR field deployments
 - P25 and DMR
 - VHF (170 MHz) and UHF (850 MHz)
- Satellite
 - L, C, Ku bands
 - Leased channels (SCPC) and subscription-based services

WIMAX OI & Gas 2014

COIComm HOUSTON, TX | NOVEMBER 5
All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited

Case 2: Onshore – Oil & Gas Company in Oman

- 90+ sites in a greenfield WiMAX onshore network
 - 5.8 GHz band (unlicensed); 10 and 20 MHz channels
 - Hybrid fixed/mobile applications
 - Data collection from 4,500 wellheads, 200 semi-mobile drilling units, camp sites (fixed) and emergency vehicles
 - Application throughput requirements ranging from 40 kbps to 5.3 Mbps

WIMAX FORUM®

In Summary

- The wireless communications requirements for Oil & Gas are complex and bandwidth demand is growing
- Each application requires specific technology and spectrum solutions
 - Design and deployment must be supported by adequate tools and knowledgeable engineering
- Spectrum availability and suitability is a key factor in the definition of a new network to support Oil & Gas operations

comm HOUSTON, TX | NOVEMBER 5 All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited.

WIMAX FORUM®

WiMAX Oil & Gas 2014

Thank you!

Gustavo.nader@celplan.com

All information contained in this document is property of CelPlan Technologies. Unauthorized copies are prohibited.

Presentation to WiMAX Oil & Gas November 5, 2014

SPECTRUM AVAILABILITY FOR OIL INDUSTRY REQUIREMENTS -WIDEBAND AND BROADBAND

- Spectrum Alternatives For the Oil and Gas Industry
- Upper 700 MHz A Block Specifics

Robert Finch Select Spectrum 703 635 2686 rfinch@selectspectrum.com

rfinch@selectspectrum.com

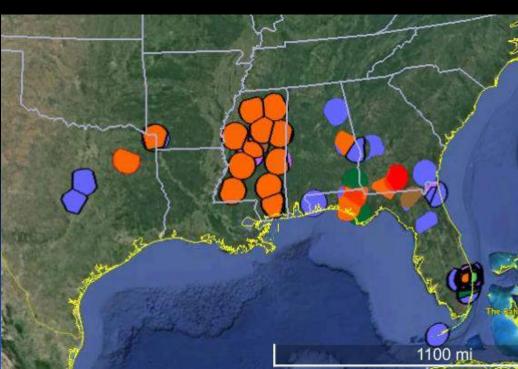
Benefits from the Digital Oil Field

- Accelerated exploration and development
- Enhanced production pates and total yield
- Collaboration between various sites and workers including mobile staff
- Improved safety and operational uptime
- Improved efficiency/reduced operating expenses
- Improved data security when moving off of common carriers

Communications Requirements for Field Telecommunications "FT"

- Communications to distant developed and remote sites
- Fast deployment including to areas without line of sight
- Varying transmission speeds from very low speed to true broadband
 - Most applications have narrowband and wideband not true broadband – requirements
 - Rapid growth of data requirements
- High reliability including in extreme environments
- Extreme Data Security

Existing / Potential Wideband and Broadband Spectrum for Oil & Gas

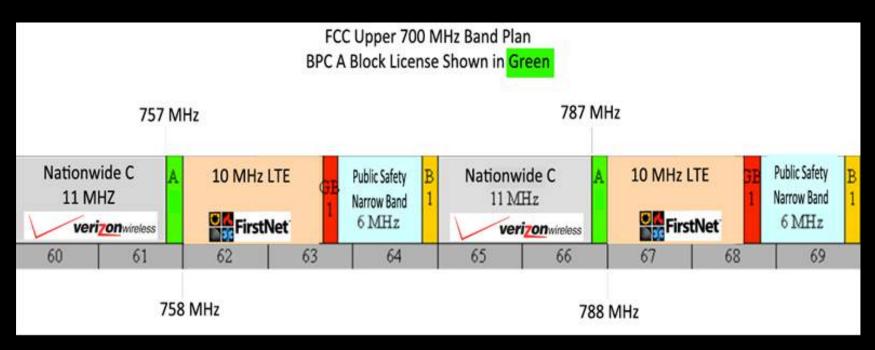

- 217+219 MHz AMTS (2 MHz Total)
 - Licenses expiring 4/2015 and may be terminated
- 218 MHz IVDS no licenses available in most areas
- 220 MHz. Mostly narrowband. Railroads targeting band
- Upper 700 MHz A Block Recommended in Utilities Telecom Council White Paper
- NPCS (900 MHz) less contiguous spectrum and not universally available
- 2.5 GHz (Sprint dominated; cost and license availability issues)
- 3.65 and 3.5 GHZ ("lightly licensed"; power, interference, incumbent and auction issues)

2.5 GHz – True Licensed Spectrum for WiMAX or LTE

- Up to 22.5 MHz/ License and 194 MHz overall
- Most Controlled by Sprint + small operators
- Many rural areas open for future licensing
- TX, OK, AR, LA
 offering planned
 for 2015

3.65 and 3.5 GHz (NPRM 12-354)

- 3.65 GHz. "coordination is each licensee's responsibility" (no protection)
- Proposed "spectrum sharing" Citizens Broadband Radio Service (CBRS) at 3550-3650 (or 3700) MHz
 - Federal incumbent exclusion zones
 - Annual auctions of "Priority Access Licenses"
 - General Authorized Access (unprotected) for 1/2 the spectrum
 - Power limits well below licensed spectrum (small cells)
 - Spectrum Access System dynamically assigns channels
 - 354 comments from <u>all national wireless carriers, Google, etc</u>.
- FCC proposes to move 3.65 GHz operations to 3.5 GHz rules


UPPER 700 MHz A BLOCK

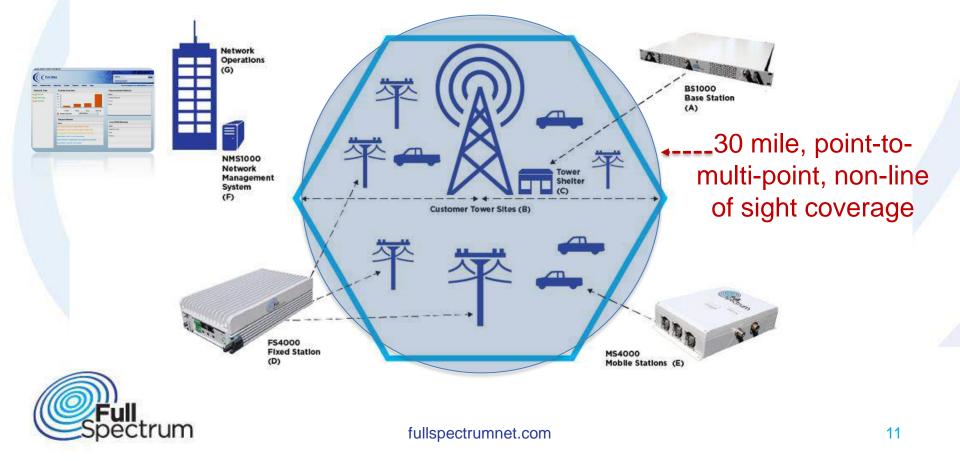
- Licensed in 52 major Economic Areas (MEAs)
- All three owners now cooperating to sell the licenses Nationwide

Upper 700 MHz A Block

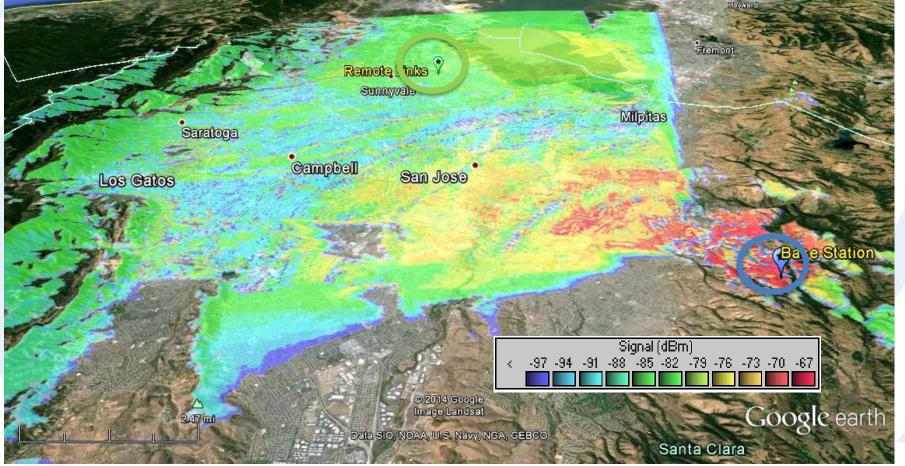
- Exclusive 2 x 1 MHz licenses, between Verizon and FirstNet with same interference protection rules
- Maximum Power is 1000W ERP lower / 30 W ERP upper band
- Fixed or Mobile

Technical Aspects – Upper 700 MHz A Block

- Transmit power:
 - Up to 1000 Watts ERP at 1000' AAT at 757-758 MHz
 - Up to 30 Watts ERP at 787-788 MHz
- Superior propagation over terrain and through foliage
- Fixed or Mobile operation
- TDD or FDD
- Capacity estimate: 4 Mbps per tower site
- Equal interference protection with adjacent bands – OOBE attenuation ≥ 43 + 10 log P dB


Use and Equipment Availability – Upper 700 MHz A Block

- System deployed: Great River Energy in Minnesota – very satisfied
- Other companies interested. RFPs and trials (example – Salt River Project) in progress
- Currently available equipment:
 - Full Spectrum
 - 4RF
 - ConVergence Technologies/Apex9
 - Tait
- Other manufacturers will modify equipment for band if customers are prepared to order (CalAmp, Carlson Wireless & others)



Example Full Spectrum OFDMA. Variant of 802.16e (Mobile WiMAX) 200 kHz to 5 MHz channel widths

- FullMAX provides 30 miles of non-line of sight, point-to-multipoint coverage from a single base station. (LTE provides 3 miles)
- 2,800 square miles with FullMAX vs 30 square miles with LTE
- Most cost effective private network for smart infrastructure

Coverage over Silicon Valley Remotes @ 20' Distance to Remote = 16 miles

Spectrum Alternatives for Oil & Gas

- Licensed, Unlicensed, or Hybrid
- (Private, Public, or Shared)
- Area, Site or Pt-Pt
- Narrowband, wideband or broadband
- Free, admin fee, purchased or leased
- Equipment matching requirements
- Available now or subject to future government decision

Presentation to WiMAX Oil & Gas November 5, 2014

QUESTIONS AND COMMENTS

Robert Finch Select Spectrum 703 635 2686 rfinch@selectspectrum.com

rfinch@selectspectrum.com

Copyright 2014 WiMAX Forum. All rights reserved

Background

- NPRM Issued Dec 12, 2012:
 - Rules for CBRS¹ in 3550-3650 MHz band and ...
 - Suggested inclusion of 3650-3700 MHz
- FNPRM Issued Apr 23, 2014:
 - Conditions for inclusion of 3650-3700 MHz
- Our Concern: Impact on Incumbents in the 3650-3700 MHz Band
 - > 2,500 Incumbents, > 39,000 Sites
 - > 100 Oil, Gas, Water, Electric Utilities (CII)

3650-3700 MHz Band is an important enabler for CIIs striving to meet the mandates of Title XIII of the Energy Independence and Security Act of 2007

¹ CBRS: Citizens Broadband Radio Service

Proposed Rules for CBRS are Unfavorable for CII/SG

- 3–Tier Licenses: Federal Incumbents, PAL, GAA
- Interference managed by 'Spectrum Access System' (SAS)
- Small cell deployment
- Short license term 1 year (5 years with stacking)
- License areas by census tracts (4,000 pops avg.)
- Limited definition for 'Contained Access' (indoor)
- Market-driven bidding process for 'Priority Access License' (PAL)
- 5 Years for incumbents to comply

WiMAX Forum Response

- Exclude the 3650-3700 MHz band from proceedings
 - Rules are untested 'IF IT'S NOT BROKEN, DON'T FIX IT'
 - Proposed rules for CBRS not consistent with CII requirements
 - Significant costs for incumbents (after 5 yr. 'grandfather' period):
 - Stranded investment

igrid

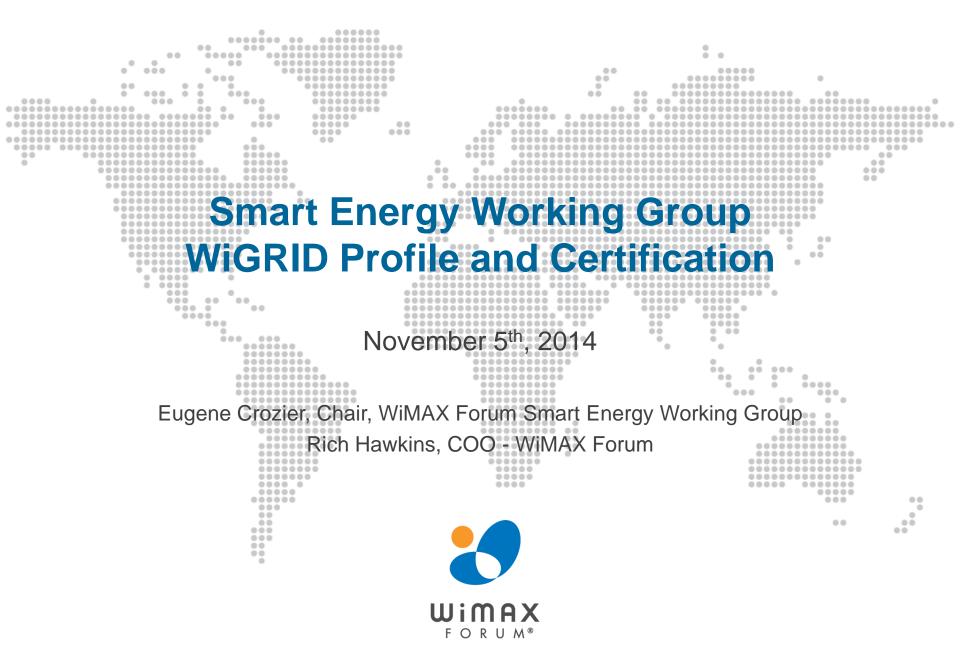
- CBRS compliant equipment
- Potential service and/or operational disruptions
- Revised cell deployment in accordance with new license boundaries and small cell conformance
- Limited spectrum alternatives for CIIs to meet SG mandates of Title XIII of EISA of 2007
- Alliance with API, UTC, various utilities & equipment vendors

Summary of FNPRM Filings

- 66 Comments were filed by July 14th deadline
 - >20 opposed inclusion of 3650-3700 MHz band
 - 6 supported inclusion only if proposed rules were modified
- 31 Reply Comments were filed by Aug 15th deadline
 - 15 opposed inclusion of the 3650-3700 MHz band
 - 3 supported inclusion only if proposed rules were modified
- The rest either supported inclusion or made no mention of 3650-3700 MHz band
 - Supporters of inclusion did not offer alternatives for compensating incumbents
 - Many focused on the 'Exclusion Zone' issues

Going Forward

- Planned Meeting with FCC Week of Dec 8th
 - With API, UTC, GRE, plus 1 or 2 additional (TBD)
 - Restate our position exclude 3650-3700 MHz
 - Emphasis on negative impact for CIIs
 - More prudent option: 'SANDBOX' approach¹ for CBRS


¹ FCC COMMISSIONER JESSICA ROSENWORCEL, IEEE GLOBECOM 2013, ATLANTA, GEORGIA, DECEMBER 11, 2013 (".....I think we need to build more sandboxes in Washington—and at the FCC. without the benefit of having tested our thoughts in the real world, we unveil a finished product, cross our fingers, hold our breath, and hope everything turns out for the best....." http://www.fcc.gov/document/remarks-commission-jessica-rosenworcel-ieeeglobecom-2013

Summary

- The 3650-3700 MHz band has proven to be an important wireless solution for Critical Infrastructure Industries (CII) including SG deployments to meet the mandates of Title XIII.
- Excluding the 3650-3700 MHz band from the CBRS proceeding will protect existing incumbents and remove uncertainties that are preventing new entrants.
- Probably won't have a final FCC ruling until early next year.
- Still time for other entities to submit an input.

Smart Energy Working Group

- The Smart Energy Working Group (SEWG) comprises WiMAX vendors, industrial operators and industry research organizations.
- The focus of the SEWG is to promote the use of WiMAX Technology in industrial networks.
- Based on existing WiMAX technology the SEWG has developed a series of system requirements and system profiles for Smart Grid applications. However these applications have synergy with Oil and Gas communications networks.
- These WiMAX Smart Grid System Profiles (aka WiGRID) are the basis for equipment interoperability, which is beneficial to vendors and industry users.
- We promote WiMAX (WiGRID) Interoperability and Certification based on the Smart Grid Profile using the Certification Testing Events.

Key Smart Energy Requirements

- Layer 2 convergence
- Uplink centric profiles
- Focus on low latency
- No centralized core required (no ASN Gateway)

WiMAX documents

The WiMAX Forum working groups have developed and approve the following documents for Smart Grid and Energy applications:

•WiMAX Forum® System Profile Requirements for Smart Grid Applications. This document outlined a series of use cases for Smart Gird applications.

•WiGRID System Profile. This document highlighted the additional WiMAX equipment requirements based on the applications.

•The **WiGRID Protocol Implementation Conformance Statement** (PICS). This is used by equipment vendors to verify their equipment against the System Profile document.

•SEWG **PlugFest Guidelines Document** (Test Procedures). This details the equipment tests to verify interoperability.

Smart Grid Use Cases

Smart Grid applications are mainly based on the following use cases that are detailed in the system requirement document;

Use Case	Direction	Latency (ms)	Predictability
1 – Situational Awareness (WASA)	Mainly UL	1000	Good
2 – Monitoring	Highly UL	100	Good
3 – Control	Mainly UL	100	Random
4 – Protection	Symmetrical	20	Random
5 – Metering Regional Collector (DAP)	Mainly UL	1000	Good
6 – Remote Site Communications	Symmetrical	100	Good
7 – Direct 4G Smart Metering (AMI)	Mainly UL	5000	Good

WiGRID Certification

Key items for WiGRID Certification:

- Adherence to the WiGRID System Profile based on the system Requirements.
- Host Testing events to support a WiGRID Certification model that is both efficient and cost effective
- Demonstration of interoperability during the Certification Testing Event against a number of use cases.
- WiMAX Forum promotes WiGRID certification as a clear statement of the benefits of WiMAX technology to industrial users.

WiGRID Certification Events

- 1st WiGRID Certification Testing Event hosted by Electric Power Research Institute (EPRI) in Knoxville TN at the end of October 2013
- The Following Companies Participated
 - GE Digital Energy
 - Siemens
 - Cisco
- The Result is 2 Base Stations and 3 Mobile Stations Successfully Certified for Interoperability
- Frequency bands were 1.8GHz, 3.65GHz, and 5.8GHz
- Future event to be held as the ecosystem expands
- Plans to add an accredited lab facility in 2015 for individual product certification

