

A WiMAX Case Study

January 27, 2014 Eugene Crozier, Wireless Specialist Powertech Labs

Powertech Labs

Founded in 1979 as Powertech Labs Inc.

A subsidiary of BC Hydro, with extensive knowledge of all aspects of the utilities industry

A large multidisciplinary laboratory, based in Surrey, British Columbia (11 acre site; 200,000 sq. ft.; 19 labs)

Over 30 years of specialized engineering expertise

145 employees: technologists, professional engineers and PhDs

Global customer base: 300+ customers, including many Fortune 500s

Smart Grid Center

• An integrated test lab facility at Powertech

- Setup and operation by Powertech
- Established spring 2012
- Simulates the current and future utility environment
 - telecom and network infrastructure
 - proof of concept for innovative technologies
 - management and operating systems
 - relays and physical devices
- Allows for interoperability, integrated and non-integrated system performance testing for future devices, management systems, telecom and data network options to support future grid applications.
 - serving utilities and commercial clients

Powertech @

WiMAX is used as a communications medium at a number of BC Hydro's site on the Gulf Islands to support FLISR.

•The key reasons for the choice of the sites were;

- Remote of the sites.
- Rural and forest conditions.

•Regular power outages.

- Environmental constraints limit the amount of power line clearance.
- Storm conditions generally result in damage to the power systems.

•Difficult access.

- Ferry and rural roads.
- With inclement weather access is difficult.

•Two aspects to reducing the outage time.

- Pinpointing fault location, repair teams know where the fault.
- Understanding what the fault is, repair team know what to do.

•Fault location and service restoration needs to be robust, reliable, and proactive.

- Reliability reinforced by a wireless system with features to migrate.
 - Precipitation.
 - Non-line of sight.
 - All sites need to have standby power.
- Fault location needs to be fast in order to minimize the damage to the transmission and distribution system.

The view

Powertech

Copyright © 2014 Powertech Labs All rights reserved

	FLISR				No FLISR			
	Time Line (Duration)	Activity	# Customers without service	Cumulative customer outage (mins)	Time Line (Duration)	Activity	# Customers without service	Cumulative customer outage (mins)
	11:00:00 (0 mins)	Fault Occured	0	0	11:00:00 (0 mins)	Fault Occured	0	0
	11:00:02 (2 sec)	Fault located by line recloser	2972	0	11:00:00+ (0 mins+)	Fault cleared by line recloser	2972	0
	11:00:30 (30 sec)	Fault isolated downstream	2972	0	11:00:30 (30 sec)	Customer calls to report lights out	2972	٥
	11:00:32 (2 sec)	Service restored downstream	926	0	11:05:00 (5 mins)	Crew dispatched	2972	14,860
ľ	FLISR Operation Complete				02:05:00	Crew arrives on scene	2972	549,820
	11:05:00 (5 mins)	Crew dispatched	926	4,630	(185 mins)	Crew arrives on scene	2112	547,020
	02:05:00 (185 mins)	Crew arrives on scene	926	171,310	02:15:00 (195 mins)	Fault investigation complete - fault located	2972	579,540
	02:15:00 (195 mins)	Fault investigation complete - fault located	926	180,570	02:25:00 (205 mins)	Repairs made	2972	609,260
	02:25:00 (205 mins)	Repairs made	926	189,830	02:35:00 (215 mins)	Service restored by manual switching	2972	639,980
	02:35:00 (215 mins)	Service restored using remote control	926	199,090	FLISR Benefit is 440,890 customer outage minutes for this event			

Eugene Crozier, Wireless Specialist Powertech Labs eugene.crozier@powertechlabs.com +1 604 598 5022

Powertech

Copyright © 2014 Powertech Labs All rights reserved

Wireless IoT Platform for Smart Grid

Michael J Martin michael.martin@ca.ibm.com

Key Concepts

- Why Wireless?
- What is the Internet of Things (IoT)?
- IBM IoT Wireless Platform
- Band Agility
- Channel Agility
- Multi-platform Solution
- Architecture
- Project Examples
- Latest Innovation MOTE

Why Wireless? - Paradigm Shift

- To handle today's volume, velocity and variety of data, enterprise data centers must become more dynamic and flexible
- One way to think about this is to imagine entire IT infrastructures that are as programmable as individual systems
- This new model is known as the "software-defined environment," and cloud computing is its first manifestation. However, it will not be the last
- Software defined networking and software defined radios are fast followers to the data center and cloud computing innovation shifts
- This new model optimizes the entire computing "stack" compute, storage and network resources – so that it can adapt to the type of work required

IBM

Why Wireless? It is important for IoT enablement of critical industry infrastructure

Petroleum and gas

Power Grid

基本林

Manufacturing

Stable wireless communication in harsh environment

- From Narrow band (VHF/UHF) to Broadband
- Massive number of connections (>1000)
- Spectrum Resource Optimization
 - -Spectrum sharing in the same spectrum range (ISM or non-ISM)
 - -Prevention of illegal radio jamming
- Different range coverage, e.g.
 - 100m to 5km wireless coverage for feeders, factory, field, etc.
 - approximately 30km wireless coverage for distribution grid in rural area
 - approximately 200km wireless coverage for transmission grid power line monitor, pipe management
- Low power: e.g. terminal devices with battery
- Low latency: e.g. sub 30 ms for fault detection and control
- "Flat" deployment to reduce risk and cost: e.g. to reduce the number of equipments

Internet of Things (IoT) – What is it?

- The Internet of Things is a third generation (Web 3.0) model of the internet
- It is immersive in nature in that it encompasses all objects (Things)
- It leverages the traditional client-server model and adds in the peer-to-peer model
- It permits devices, sensors, and objects of any kind to interact with each other ubiquitously on a machine-to-machine (M2M) level without user requests, demands or acknowledgements
- The current Web 2.0 model is a client-server design that leverages Human-to-Machine (H2M) connections as its main interaction approach
- IoT is highly dynamic and varies its configuration autonomously as a Self Organizing Network (SON)
 - Self-planning
 - Self-configuring
 - Self-optimizing
 - Self-healing
- The dynamic aspect can remap the network based upon:
 - Tíme
 - Place
 - Application
 - Need
- The IoT is a distributed and federate model, but it can also support a centralized model, so it is very flexible and a hybrid of the architectures

Software Defined Networks

IBM Software Defined Network for Virtual Environments creates a more responsive network by creating a virtual network for virtual machines. This virtual network is decoupled and isolated from the physical network much like a virtual machine is decoupled and isolated from its host server hardware. This approach provides several advantages:

- Virtual networks can be created without any changes to the existing network
- Since the physical network does not have to be changed, it can be wired once
- Provisioning and administration can be simplified and automated
- IP and MAC addresses can be reused permitting logical separation of networks for multi-tenancy
- Significant benefits to both CapEX and OpEX

IBM IoT Wireless Platform – What is it?

- It is a next generation microwave radio platform that is software defined as opposed to a hardware design model
- It uses standard or ruggedized IBM pSeries server operating with a hardened LINUX operating system
- The radio is in two parts an indoor unit and an outdoor unit
- The indoor unit is an IBM pSeries server and can be located up to 20 km away from the outdoor units
- It is able to simultaneously support multiple radio standards
- Both the base station and the CPE are fully software defined, so they can co-host other compatible applications that can further enhance the design
- The platforms are agile so they can be changed in the field and updated from a central location to reduce OpEx and better manage the asset with longer life and reduced risk
- Tight integration can be had with the core optical network as well as extensions off of the CPE
- A highly secure model with end-to-end encryption that can co-host software defined firewalls at the edge
- Specific apps for the edge points can be nested in the CPE for control and interface requirements
- The cost for the platform is dramatically lower to capitalize and operate compared to a traditional hardware platform
- It offers an ultra low latency for compliance with IEC-61850 and other time sensitive solutions

Band Agility

- The IBM IoT Wireless Platform can be configured to operate at any channel plan and band from 1 MHz to 6 GHz
- The filtering is software defined with sharp edges
- Possible bands include:
 - 232 MHz (Sensing and Data Collection)
 - 450 MHz (LMR)
 - 700 MHz (Emerging for First Responders)
 - 800 MHz (870-880 MHz for UK and EU)
 - 900 MHz (ISM 902-928 MHz)
 - 1400 MHz (FDD)
 - 1800 MHz (TDD)
 - 2200 MHz (Various uses globally)
 - 2485 MHz (ISM Wi-Fi)
 - 3650 MHz (Cognitive Compliance)
 - 4900 MHz (First Responder's Band)
 - 5250 MHz (UNII-1 5150-5250 MHz) (USA and Canada)
 - 5350 MHz (UNII-2 5250-5350 MHz) (USA and Canada)
 - 5725 MHz (UNII-2e 5470-5725 MHz) (Worldwide)
 - 5825 MHz (UNII-3 5725-5825 MHz) (USA and Canada)

Bolded spectrum is either developed or under development

- Pilot radio being prepared as one three-sector base station and 20 CPE at 902-928 MHz
- New bands can be configured in 90 days at the factory and then an additional 60 days for
- 8 testing and regulatory approvals

Multi-Platform Solution

- The IBM IoT Wireless Platform can <u>simultaneously</u> operate multiple networks
- Options available today include:
 - LTE
 - Wi-MAX
 - GSM (HSPA)
 - CDMA (EV-DO)
- Radios can operate as Point to Multipoint (P2MP), or Point to Point (P2P) so the base station can be a fixed link and a P2MP base station at the same time
- Wi-MAX permits meshing and therefore range extension is possible as CPE relay one to another to the base station

GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS

Architecture

Wireless Access Appliance : Flexible and Low Power

- Base band + RF: Modular design for easy customization
- SDR: capability for different standards
- Rich hardware interfaces: support different terminal connections.
- Outdoor design: compliant with environmental regulation (IP65)

System and algorithm optimization for: Lower cost, higher performance, smaller size

V1.0 outdoor

V1.1 outdoor, low cost, smaller size

V1.2 outdoor, low cost, high performance

V1.3 indoor, low cost, module for meter

© 2014 IBM Corporation

Outstanding performance through network analysis and continuous optimization

Cognitive Radio for spectrum optimization and management

• Key technology to ensure stable communication with strong interference

Cross layer optimization for QoS

• Optimization based on the network quality analysis and service quality requirement

Power management for low power and Green

- Open and close loop power control technology based on network analysis
- CFR technology

Software Defined Network for flexible topology support

• Enable different topology through SDN, to support various applications

Demonstrated Advanced Performance through customer pilots

B. Shanxi: Pipeline construction

C. Xinjiang: Digital Exploration

D: Shanxi: Distributed Grid Monitoring

Provide value to customer through solution integration

A. Smart meter infrastructure

- Value: Long distance and high receiver sensitivity, for in-building and underground communication.
- Finished integration with Great Power.

C. Video surveillance for power tower

- Value: High throughput, low cost and reduce backhaul bandwidth
- Integrating with SVS

14

B. Distribution Grid Automation

- Value: Stable communication with low latency.
- Finished integration with two DGA applications

D. Power line monitoring

- Value: Long distance and flexible topology
- Joint proposal with CEPRI

The latest pilot: Support Video Surveillance of Oil Field

- Tianjin oil field pilot is led by IBM
- Requirement: To support high definition surveillance (1080p) for oil field (~ 6km distance)
- Result:
 - Through spectrum optimization provided stable radio communication with CRC error < 0.1%.
 - Through the cross layer optimization supported the smooth HD video streaming with QoS guarantee.

PetroChina

15

Low-Power Mote Technology (LMT)

- LMT—a general wireless data gathering and control technology
- World's lowest power consumption
 - 5 to 7 year lifetime with two AA batteries
 - Forms mesh network, highly reliable, robust and scalable
 - All data transfer secure and encrypted

Very flexible and modular design

By Michael J Martin IBM Global Technical Services Global Center of Excellence in Energy and Utilities 416-478-3483 ♦ michael.martin@ca.ibm.com

Thank You

About the Author

Michael James Martin, MA, MBA, GDM, SCPM, PMP, CBNT

Michael Martin is an IBM Senior Executive Consultant in the Global Center of Excellence for Energy and Utilities based in Toronto, Canada. He consults primarily on complex RF systems used for smart meter and smart grid systems. Mr. Martin possesses an extensive post-secondary education and is a dedicated life-long learner. In his free time, he is pursuing a third masters degree, flies small Cessna and Piper airplanes, camps in his motorhome, and plays with RF stuff.

Grid Automation Industrial Products – WiMAX Case Studies

Craig Tedrow Product Architect Judy Lestrange Product Manager

Agenda

- 1. Product Summary
- 2. Case Study
- 3. Partnering with Customers

Product Summary

MDS Mercury Series

What is it?

The MDS Mercury Series is a highly secure, purpose built, industrial-grade communications platform for mission critical applications. The MDS Mercury Series is available today in 3 frequencies designed to facilitate wireless, high throughput networking requirements :

- 5800MHz- global, unlicensed WiMAX solution
- 1800MHz- a product specific for the frequency available to Canadian Utilities
- 3650MHz- a lightly licensed solution for US, Canadian and Australian markets
 Products offered in the MDS Mercury Series
 include base stations, indoor and outdoor
 subscriber units.

Value Proposition

•System Solution Flexibility - Numerous connection and packaging options provide customers with the ability to build out a communications infrastructure solution specific to their business and geographic requirements.

•Advanced Security Features - Dynamic key rotation, device authentication using EAP-TLS & Radius server, IEEE 802.1x port blocking, secure remote access methods, physical security and tamper alarm controls for packaging options.

•Ease of use Network Setup & Management easily manage base station and subscriber configuration at any computer with web enabled services. Additionally, GE's PulseNET EMS, manages device statistics and provides alarms for tamper, voltage deviation, power outage and restoration.

Change & Technology Drive Innovation

Distribution & Substation Facilities

- High per circuit assets
- Shortened response time for outages
- Increased application use and demand for real-time visibility into distribution and substation facilities.

Network & Telecommunications

- Broadband microwave backbone and WiMAX radio edge
- WiFi
- Voice over IP
- HD video
- Centralized network security

- Justifies infrastructure build
- Encourages cost-effective communications
- Requires higher performing network

- Provides a high bandwidth, low latency network
- Simplifies network access for all users
- Leverages centralized phone system
- Advances monitoring capability
- Improves risk mitigation

Our Mission

Develop a scalable, repeatable, and cost-effective digital oilfield communications solution to meet the current and future needs of EP Energy field operations.

Project Considerations

- Field Connectivity
- Site Mobility
- Field Applications and Reporting
- Voice
- 99% Communication availability
- Frequency of Polling
- Bandwidth utilization
- Total number of devices, users, and protocols
- Integration of current technology (IP telephony, WiFi, CygNet)
- Network and data security
- Device monitoring, management, and support
- Power Efficiency
- Remoteness of field locations
- Scalability

Mercury 3650 Oil/Gas Application - SCADA Backhaul

 End customer: Whiting Petroleum – oil firm drilling in North Dakota

• Data requirements were low, however video used at one site drove higher throughput requirement

Decision made to use WiMAX technology

•Timeline was critical as weather past November inhibits tower construction and radio field deployment

Customer required 24/7 SCADA data.

Outdoor subscriber units (ODUs) chosen for several sites

Mercury 3650 Oil Production Case Study

• Customer: EP Energy, Houston TX

- Customer Requirements:
 - Drilling & Field Operations
 - High per-acre well density
 - Shortened drill to complete time
 - Increased application use and demand for real-time visibility into drilling and field operations
 - **Network & Telecommunications**
 - Broadband microwave backbone and WiMAX radio edge
 - WiFi
 - Voice over IP
 - HD video
 - Centralized network security

Decision made to use WiMAX technology with WiFi

SCADA Panel Communications

WiMAX Field

Backbone Tower Location

Drilling Rig Communications Package

Project Considerations

- Field Connectivity
- Site Mobility
- Field Applications and Reporting
- Voice
- 99% Communication availability
- Frequency of Polling
- Bandwidth utilization
- Total number of devices, users, and protocols
- Integration of current technology (IP telephony, WiFi, CygNet)
- Network and data security
- Device monitoring, management, and support
- Power Efficiency
- Remoteness of field locations
- Scalability

Customer Considerations

Drilling

- Video
- Accessibility to shared Documentation (Well CAD Drawings)
- Real time Drilling Monitoring PVTs

Construction

• Accessibility and bandwidth to shared Documentation (Site CAD Drawings)

Reservoir Engineering

- Flexibility to add Well Monitoring Communications
 - Build up test
 - Flow Test
 - Down Hole Monitoring

Production

- Remote Maintenance
- Field monitoring and event alarming
- Radio
- Asset management

SCADA/Measurement

- Remote Maintenance
- EFM (Electronic Field Measurement) Gas and Liquid
- PLCs communications
- Safety and Control System
- Power Grid
- POC (Pump Off Control)
- Gas Lift
- ESP
- Chemical Injection
- Tank
- Well
- Separators
- Compressors
- Pumps

Customer Considerations

Facility Security

- Cameras/DVRs
- Access Control
 - IP Intercom
 - Gate Controls
 - Card Readers
- Integration with existing systems
 - SCADA
 - Cisco CallManager

IT

- Ease of use
- Low administrative overhead
- Remote management, monitoring, diagnostics, and support
- Secure connectivity of users/devices
- Integration with existing systems
 - Network Infrastructure
 - Cisco CallManager
- Enablement of future technologies
 - Cisco Jabber

Cost Savings Case Study

Old Way Satellite (High Latency, Low Bandwidth)

Case Study #1 Field 1 **\$910,400**

Case Study #2 Field 2 - New field projection \$1,422,500 <u>New Way</u> <u>EPE MAX Connect</u> (Low Latency, High Bandwidth)

Field 1 \$120,800 Savings - \$789,600 per year

Field 2 \$188,750.00 Savings - \$1,233,750 per year

Production Operations

- There could support an average of 70 wells or more per tower location.
- An estimated SCADA radio communications count could be around 5 per well and even more at the CPFs (Central Process Facilities). Partnering with vendors and developing low cost Wi-Fi communications and device solutions could potentially reduce hardware and installation cost as much as 80% and provide almost instant data platform to field devices.
- An example is that EP Energy can take advantage of off the shelf radio solutions that will cost less than \$200.00 verses \$1200.00 radio infrastructure or even eliminate cabling.
- It has proven that Well Head and SCADA Wi-Fi network connectivity reduces travel and reporting time
- Reduce risk and improving Safety Operation's support personnel can evaluate the real-time data for the need to be deploy and if the environment is safe.
- Accelerate the deployment and integration of IP field devices and communications

Intangible Benefits

Drilling, Completion, Construction – IT MAXConnect

- High bandwidth
- Low latency
- Improved remote IT support
- Voice & video capability
- Simplified and secure contractor access to wireless, Internet, and email
- Extension of collaboration tools to the field (web and video conferencing, IM)

Production, SCADA, Measurement – IT MAXConnect

- High bandwidth
- Network access at the well
 - System visibility & reporting
- Efficient IP communication
 - Multiple connections per device if needed
 - Short polling cycles near real-time
 - Visibility to the end device
 - Simplifies troubleshooting
 - Allows device level monitoring

Customer Feedback

"The WiMax that was installed in the field is working fantastic! It is working so much faster than the satellite system that was here. It is almost like being in the office. We were not doing our reports out here due to the time. I believe that this will save us up to a couple hours/day on computer. Thanks Again." – Construction Supervisor

Challenges and Concerns

Geographic challenges (Remote areas, proximity to communication towers)

Environmental challenges (Weather, H2S, Area Classification)

Infrastructure challenges (Land, Power)

Physical security (Theft)

Network security (Unauthorized Access)

Support model (CPF/Well Deployment, Rig/Well Completions moves, Device Additions, Break-Fix)

Feedback needed for continuous process improvement

Will benefits be leveraged throughout the organization?

How do we maximize the potential of the solution?

Emergency/Temporary Communications

- Operations is planning to have a local support staff of 50 to 150 field contract and EP Energy personnel during the Wolfcamp development.
- EP Energy began construction on new office and warehouse in the Big Lake area. Our temporary WiMAX/WiFi communications package was utilized to quickly provide service to the temporary office facility.

Environmental & Infrastructure Challenges

- Use of solar power systems when commercial power is unavailable
- Use of Class I/Div II equipment in hazardous areas
- Weatherproof enclosures protect equipment from the elements
- No climate control necessary

IT Initiatives

Implementation of Cisco Identity Services Engine (ISE) will automate and simplify access control and security compliance for wired and wireless devices.

- <u>Secure access control</u> through device and user-specific authentication and authorization methods
- <u>BYOD</u> supported through identification, onboarding, and enforcement of secure access for virtually any mobile device
- <u>Guest wireless network</u> with Internet and email access will eliminate the need for costly 3rd party satellite services
- <u>Wireless portal</u> will allow business sponsors to add guest wireless users, thus removing the need for IT involvement in guest wireless provisioning

Current and Future Development

- Low-cost WiFi terminal server
- Smart WiFi Wireless Transmitter
- Smart WiFi Tank Radar Gauges
- WiFi HD Camera and NVR (Network Video Recorder) System
- **Power Monitoring**
- **IP Intercom**
- **IP Environmental Monitoring**
- Collaboration
- SCADA Event Alert

Application Mercury in Mining Transportation

Customer: MRX-Perth, Australia

Requirements:

- Mobile tracking of locomotives
- Seamless handover of data
- High reliability required for unmanned locomotives

Solution:

- 2 AirSynergy base stations & 1 ASN Gateway
- Mercury 3650e indoor subscriber (IDU) in each locomotive

Application: Mercury in Utility AMI & DA

Customer: Town of Danvers, Danvers Massachusetts, USA

Requirements:

- WiMax backhaul for 28 AMI collector sites
- 99.999% reliability
- Low latency required for distribution equipment

Solution:

- Mercury 3650e subscribers at collector sites
- Base stations at selected sites
- Outdoor subscribers with WiFi used for workforce automation

MDS Mercury Technical Specifications

WiMAX operation: 802.16-2005 (16E) with demonstrated interoperability RF Channel Bandwidth: 3.5, 5, 7, 10MHz MIMO: 2x2 on subscribers and base stations Power output: 30dBm per channel, 23dBm for 3650 ODU ODU Antenna: integrated 18dBi for 3650 & 5800 MHz Indoor units: dual TNC antenna connections Mobility: standard WiMAX hand-offs with ASN gateway integration Modulation: Adaptive with QPSK, 16QAM, 64QAM Transmit power: 30dB EVM at 64QAM and 30dBm Convergence sub layer: Eth-CS

MDS Mercury Technical Specifications

Networking

2 Ethernet ports

1 RS-232 serial port

IEEE 802.1d Ethernet bridging

Terminal server TCP/UDP serial data encapsulation for SCADA devices Security

User account management via RADIUS with 3 user levels PKMv2 with user issued X.509 certificates for EAP-TLS authentication

Device management

Local console, SSH, HTTP/S

SNMP v1/2/3 with MIB-II and proprietary MIBs

Network-based firmware upgrades using FTP, SFTP, or TFTP

Local event logging with syslog forwarding

Power input – 10 to 60 VDC for BS & SU. PoE for ODU

Environmental, physical, regulatory

FCC, IC, ETSI IEEE 1613 Class 1 / Div 2

MDS Base Station and Subscriber Unit Details

Note: antenna connections shown are 1800 & 3650 indoor subscriber and base station. Mercury 5800 indoor subscriber & base station antenna connector shown in photo above

> 28 GE Internal and Confidential 2/3/2014

MDS Outdoor Unit (ODU) Details

MDS Mercury Series

Mercury Product Models

Frequency Availability: 1800, 3650, 5800MHz

Base Station + MDS PulseNET Mercury Outdoor Subscriber Unit **Packaged Model** Indoor Subscriber Unit Installation Kits **NMS** MDS PulseNET • Pre-tested for compatibility Provides integration with Network Management 2 x 30 dBm (1800 & 3650), 2 x 23 dBm (3650 SU), Software for MDS & 3rd with MDS devices 2 x 30 dBm (1800 SU), Mercury, iNET, SD and 2 x 23 dBm (5800) Party Devices – PulseNET 2 x 18 dBm (5800 SU) third party AMI collector • Facilitates easy, single MIMO Matrix A/B Assessment & source ordering boards MIMO Matrix A/B implementation services -40° C to +70° C • Panel, sector and ODU • IEEE 1613 compliant -40° C to +70° C Hosted on or off-site antennas IEEE 1613 compliant **Network Operations Center** • IEEE 1613 compliant CSA Class 1 / Div 2 Connector kits with a CSA Class 1 / Div 2 capabilities jumper, grounding and certification • 1 Ethernet port, 1 • NEMA 4x weatherproofing Serial port, 1 USB Host 2 Ethernet ports, 1 Serial Pole mount ready • Cable in a variety of port, USB, GPS Integrated antenna diameter and prices Physical tamper alarm Built-in WiFi (Subscriber) Power over Ethernet Field-rated power supplies Unit only) Designed for easy field (POE) troubleshooting and • 10-60 VDC option maintenance • Optional built-in WiFi • A/C input and 8-hour

battery backup

30 GE Internal and Confidential 2/3/2014

Additional Offerings

Mercury Technical Differentiators

Technical Feature	Customer Value
User ports handle 16.5 kV ESD without damage.	Reduces field failure due to atmospheric conditions, & thunderstorms
Products designed to operate from -40 to +70 degrees C	Cold start at -40 degree allow uncompromising operation of system
True MIMO design, instead of MISO	Two full transmit chains provides improved range & throughput over competition. MISO hinders uplink centric application.
Built to last	Cast aluminum enclosures double as heat sinks while withstanding shock and vibration
ODUs use highest in-class gain antennas	"size matters" 6 dB advantage provides double the range
FW fully field upgradeable; Ease of use	Customers have access to latest product enhancements when they are released. No license or special SW required for upgrade
Built-in alarm monitoring and event logs	Event logs may be sent to an external server for view on a handheld device.
Customizable for networks	Allows customers to work with existing network design GE Internal and Confidential

^{2/3/2014}

Smart**Grid**

LEADING CANADA'S SMART GRID TRANSFORMATION

WiMAX Communications for Canadian Utility Applications

Smart**Grid**

LEADING CANADA'S SMART GRID TRANSFORMATION

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

bcit.ca

LEADING CANADA'S SMART GRID TRANSFORMATION

ONTARIO CONTEXT

Government/Regulator Support for Smart Grid

Smart Grid

LEADING CANADA'S SMART GRID TRANSFORMATION

Ontario Faced a Looming Resource Gap

Figure 1: Contribution of Existing Resources Towards Resource Requirements (Effective MW)

Largest Market in World on Mandatory Residential Time of Use Rates

Y SMART **GEGEORIS** CANADA LEADING CANADA'S SMART GRID

LEADING CANADA'S SMART GRID TRANSFORMATION

Ontario's Energy Supply Mix				
SUPPLY TYPE	FUEL TYPE	LOCATION	CURRENT/PROPOSED PRICE (kWh)	
Peaking fuel for reliability*	8% natural gas	various plants	8.5¢ - 14¢	
Renewable Opportunities**	TBD% – new renewables portfolio	wind solar biomass biogas landfill gas new hydro	8¢ - 44.3¢	
	1-2% rooftop solar***		53.9¢ - 80.2¢	
Baseload 76%*	53% nuclear	Pickering Darlington Bruce	6¢ - 7¢	
	23% hydroelectric	Niagara Falls St. Lawrence River Northern rivers	5.7¢ - 6.2¢	

* Existing supply

** Emerging supply

*** 1% = approximately 100,000 residential rooftops

Proliferation of Distributed Generation

LEADING CANADA'S SMART GRID TRANSFORMATION

FIT (10kW+) 10,000+ applications received for 20,000+ MW

Proliferation of Distributed Generation

LEADING CANADA'S SMART GRID TRANSFORMATION

MicroFIT (<10kW) 40,000+ applications received for 350+ MW

LEADING CANADA'S SMART GRID TRANSFORMATION

CASE STUDY

Hydro One Advanced Distribution System Project

System at a Glance

Transmission:

28,600 km Hydro One's transmission wires would measure this far if stretched end to end

96%

Hydro One owns and operates 96 per cent of Ontario's transmission assets, by capacity

276

Transformer Stations (TS) and Switching Stations (SS)

640,000 km² Geographic area served

48,000

Customers:

112 Large industrial customers

1.3 million Distribution customers (homes, farms, seasonal, small business)

20

Remote Communities served through 18 distribution systems

Subsidiaries:

Hydro One Networks Inc. Hydro One Remote Communities Inc. Hydro One Telecom Inc. Hydro One Brampton Networks Inc.

Electricity Utility of the Future

Distribution Modernization

 Initial roll-out of smart grid technology in Bruce and Grey Counties to remotely diagnose problems and operate equipment to increase reliability and safety and reduce costs

Information + Systems

Enterprise Systems

 SAP- for Asset Management, Supply Chain, Finance, HR and Customer Service

Operational Systems

NMS, DMS, OMS, ODS, GIS

Mobile Worker

 Next generation wireless field communication devices to increase efficiency

Customer Service

 Enhanced customer service through new information and applications (Smart meters, TOU Portal, Outage App, CIS, IHDs)

Asset Management and Analytics

 Asset Analytics to optimize investment plans lowering maintenance and capital costs

Business Case Started in 2005

Holistic Smart Grid Approach Based on Four Technology Pillars

A Collaborative Approach to Success

- Hydro One spearheaded,
 together with 5 other large
 Canadian utilities, a proposal to
 regulator for a dedicated
 wireless spectrum for utility
 operations
- Acquired the 30 megahertz (MHz) sub-band at 1800-1830 MHz
- A world first!

WiMAX Enabled Utility Applications

Factory Built & Commissioned

Wirne

& Telecom Building

Top 3 Technical Challenges for WiMAX Networks

- 1. Using existing (Layer 2) IEC 61850 "outside the fence" presents many technical challenges to ensure consistency of network performance (e.g. Latency).
- 2. Distributed or ASN-less configurations (Standalone mode) are not standard but preferred.
- 3. Ensuring an equivalent carrier-grade communications infrastructure (e.g. meeting availability objectives).

Public Carrier vs Private Network

Third Party Public Telecom Carrier

- A. Not able to provide coverage during Force Majeure storms and events
- B. Monthly subscription fee model with growing number of smart grid devices
- C. Wireless Coverage based on business case

Utility Owned Private Network

- A. Utilities are Force Majeure
 companies electricity is
 basis of everything
- B. Adds to Utility OM&A instead of Capital Rate Base at low costs of capital
- C. Utility obliged to server all customers everywhere

Support Business Case by Providing Smart Meter Data Backhaul

LEADING CANADA'S SMART GRID TRANSFORMATION

Alex Bettencourt MANAGING DIRECTOR SmartGrid Canada alex.bettencourt@sgcanada.org

CenterPoint Energy's Smart Grid Communications Network Deployment & Operations & The Role of WiMax

Chuck Hackney Director Telecommunications Services

CenterPoint Energy (CNP)

Electric Transmission & Distribution Interstate Pipelines Field Services Natural Gas Distribution Competitive Natural Gas Sales & Services

- Headquartered in Houston, TX
- Serving 5.5 million electric & gas customers
- \$22.8 billion in assets
- \$7.5 billion in revenue
- More than 8,700 employees
- Over 135 years of service to our communities
- Electric transmission and distribution
 - Over 2.2 million customers in Houston area
 - 17.3 GW peak demand
 - 80 GW hours delivered annually
 - 232 substations
 - 3,742 miles of transmission
 - 48,733 miles of distribution

Smart Grid Communications Deployment

Purpose:

• Architect and build an end-to-end communications network to support the Advanced Metering System and Intelligent Grid.

Timeframe: 42 months

Objectives / Scope:

- Provide communications coverage to CNP's entire 5,000 sq. mile electric service area
- Deploy approximately 5,500 cell relays (meter data collectors) and 140 WiMAX tower sites that communicate with 2,300,000 meters.
- Provide redundant two-way communications to end points, i.e., meters, grid devices.
- Utilize a dual communication (active-active) path architecture that is scalable to meet Smart Grid communication needs
- Provide required data throughput capacity
- Perform reliably, i.e., storm conditions
- Comply with cyber security standards

Components of our Advanced Metering System (AMS)

Combined with back office computer systems and integration, our AMS provides:

- Daily register reads
- Daily 15 minute interval reads

- Remote connect / disconnect / on-demand reads
- Consumer access to their data via consumer portal

Communications Technology Direction

Communication Components Considered

Technology	Benefits	Challenges
Cellular	 Most Geographic Coverage (typically) No additional infrastructure for backhaul Broadband coverage Rapid deployment 	 High variable expense cost for data usage Reliance on cellular infrastructure Rapidly changing environment and technologies
WiMAX	 Engineer according to requirements Build for the future (higher bandwidth) Potential for synergies within field network Rapid deployment (once in place) 	 Infrastructure cost Achieving coverage, i.e., geographies, meter density in certain areas Permitting
Hardline	 Proven technology Able to configure/size accordingly 	 High fixed expense cost Difficult to manage individual circuits Reliance on carrier infrastructure Long Installation timeframes
BPL\PLC	 Utilize existing infrastructure The "Broadband" promise Large "theoretical" geographic coverage 	 Frequency interference High price point Limited success in field trials

Most deployments rely on multiple technologies to achieve a full coverage cost effective solution

Communications Technology Direction

Result: Hybrid Solution

Deployment Considerations...

Close coordination with the meter deployment

Deployment Considerations...

Be prepared to meet aggressive time lines

Cell Relay site selection process in the absence of a permanent TOP

Deployment Considerations...

Manage suppliers, field coordination, construction and performance acceptance/testing

Deployment & Operational Considerations...

Engage Network Operations at the project onset

- Establish an operational strategy that parallels deployment; operations input in the network design is critical to an effective operation.
- Establish Network Control Center that enables complete end-to-end network visualization and management
- Fully leverage data analytics as part of the monitoring and management; it is a valuable tool in the alerting of potential network issues
- Establish a solid acceptance process for the handoff to production

Deployment & Operational Considerations...

Implement dashboards and data analytics into day-today network operations

CNP has moved to a greater utilization of and reliance on automation technology and data analytics; a premium has been placed on network uptime, resiliency and reliability

Outcomes of the deployment *WiMax Has Been A Key To Our Success*

- WIGRID2014 @DistribuTECH | SAN ANTONIO | TEXAS JANUARY 27
- Deployed 2.3 million meters, 140 150' WiMax Towers (Aggregation Points), and 5,500 WiMax Connected Meter Data Collectors in 42 months
 - WiMax has performed well. In excess of 99.9% availability.
- Implemented an Network Operations Control Center
- Collect 220 million reads per day (15-minute interval usage)
 - 99.9% successful read rate
 - 99.5% successful automated service order rate
- Over 7 million service orders with average time to execute < 30 min.
 - Over 700,000 gallons of fuel saved
 - Over 6,300 tons of CO₂ emissions avoided
- Power Off Notifications (PONs)/ Power Restore Notifications (PRNs) integrated into Outage System
 - Proactive Outage Notifications
 - Meter alerts integrated into Analytics System

Thank You

Chuck.Hackney@CenterPointEnergy.com

DTECH 2014 presentation – Lee Lipes

Wide Area Automation

Restricted © Siemens AG 20XX All rights reserved.

siemens.com/answers

SIEMENS

Introduction

WIMAX Fit for Electric Power

Feeder Automation

Distributed Generation

SIEMENS

Why WiMAX for Private Network?

WiMAX is the only technology available that meets the needs of the energy market in a standards based way

- Ecosystem long technology lifecycle demanded standards based solution required
- Range / Throughput- scaling over huge areas tens- hundreds of miles with broadband rates
- Scale Reduction of self interference required
- Quality of Service- Multi-service networks
- Security- Must meet the needs of Critical Infrastructure Protection

RUGGEDCOM WIN Multi Service Solution

Applications

- AMI Backhaul
- SCADA
- Distribution
 Automation
- Mobile Workforce

Broadband Rates

 10-40 Mb/s throughput

Wide Area Wireless Coverage

• 5-40km Range

Restricted © Siemens AG 20XX All rights reserved.

The WiMAX Gaps

WiMAX was originally designed for service provider mobility networks

As such there is some optimization required for industrial customers

Major areas include:

- 1. Frequency bands available for industrial customers
- 2. Ethernet based for industrial protocol support
- 3. Distributed architectures for scale, simplicity and single point of failure elimination
- 4. Traffic pattern optimization
- 5. Hardened equipment to relevant standard (IEC 61850, EN50155, ATEX...)

WiMAX can be used but requires optimization for industrial markets

Restricted © Siemens AG 20XX All rights reserved.

The role of WIGRID and the SEWG

Leverage the ecosystem of wimax **standards based** equipment but tailored to the needs of energy customers

Ethernet based systems with distributed architectures

More data going **upstream** than in conventional ISP model

Longer range required for geographically dispersed networks

Frequency bands which can be used by private companies (**5.8**, **3.65**, **1.8**, **1.4** GHz)

Drive interoperability around this "energy profile"

Providing the benefits of 4G network technology optimized for energy's needs

Restricted $\ensuremath{\textcircled{O}}$ Siemens AG 20XX All rights reserved.

SIEMENS

Fault Detection, Isolation & Restoration

Detect fault

Communicate between switches / reclosers to locate fault

Isolate fault by restoring power to unaffected areas

Present mode of operation is very manual and requires coordination with field personnel and truck rolls in some cases

Service restoration can be more than 1 hour

"Self healing" distribution grid with rapid service restoration is the goal

Standards based solutions desirable Restricted © Siemens AG 20XX All rights reserved.

Page 7 2013-09-23
SIEMENS

Case Study- A&N Virginia

Electric Cooperative on the East coast of the United States

- Covers 3 counties over two States
- Total revenue of \$22.4M
- Total customers 11,389

Project / Business Drivers

- Needed to improve reliability of supply to local hospital
- Lots of accidents and storms
- Improve reliability indices

Scalable and reproducible across service territory

Based on standards

Lee Lipes

Solution Description

- Decentralized solution Logic is driven down the field device level
- Uses communications to exchange data among distribution devices to perform Fault Detection, Isolation and Service Restoration (FDIR) selfhealing logic to create a safer, more reliable power system
- IEC 61850 is accepted as an open Smart Grid protocol
- GOOSE messaging provides ultra-fast data exchange allowing devices to make intelligent decisions, as a group, to self heal the loop
- Using the IEC 61850 standard allows the recloser and/or switch to become an extension of the substation logic
- Several messages are exchanged to restore fault and therefore low latency communications is quite important to overall restoration times

Electrical System

- 1. The automation system locates the faulted line section
- 2. Breaker 1 opens to disconnect fault
- 3. Recloser 1 opens to isolate faulted line section
- 4. Recloser 2 closes to restore power to the unfaulted line section
- 5. Breaker 1 recloses to determine if it is sustained fault
- 6. Breaker 1 trips using overcurrent function and lockout activates

Restricted © Siemens AG 20XX All rights reserved.

Page 10 2013-09-23

Communication System Architecture

SIEMENS

SIEMENS

Quality of Service Considerations

Unsolicited Grant Service (UGS)

- For TDM services like E1 & T1 (or fractional E1 or POTS type)
- Fixed size data packets (frames) on a periodic basis
- Enhanced-Real Time Polling Service (ert-PS)
 - For voice applications (like VoiP not POTS)
 - Fixed bit rates with Guaranteed rate and delay

Polling interval at the start of connection

Real Time Polling Service (rt-PS).

- For real time services where some jitter is not a problem.
- Variable bit rates with Guaranteed rate and delay
- Service parameters: CIR (nonoversubscribed)

Non Real Time Polling Service (nrt-PS)

- Variable bit rate services
- Guaranteed rate required, guaranteed delay not required
- Service parameters: CIR with oversubscription

Best Effort (BE)

- For service with no rate or delay guarantees- Broadband service type connections
- Only MIR is defined

	CIR	MIR	Jitter	Latency	QoS Goal					
SCADA	Yes	No	No	No	Reserve BW and prioritize					
Voice	Yes	No	Yes	Yes	Real time capability					
Video	Yes	No	Yes	Yes	Real time capability					
DA	Yes	No	Yes	Yes	Nail up low BW					
Field Worker s	No	Yes	No	No	Set a max BW to not effect other apps					
AMI	Yes	Yes	No	No	Make sure data can get through and scale					

Communication System how it works...

In order to keep latency low, but allow for maximum scalability real time polling service was used

Polling interval is set to 5 miliseconds, HARQ is set on

GOOSE has sequence numbers to take care of out of order messages

For multiservice network QoS very important

- Committed information rate of 500 kb/s per end point
- VLAN based classification
- Multicast traffic support
- Real time polling

SDFA Installation (A&N Phase 1)

Results & Lessons Learned

System was first tested and installed during Hurricane Irene in August 2011 with very reliable results

System is able to restore power in under 300 msecs

Backup generators were not triggered at hospital

Power system design should also look at communications considerations

Recloser locations where RF path is checked

Bandwidth during a major event can be quite significant

Accomodating Renewable Energy

Government initiatives around the world are promoting/legislating utilities to accommodate renewable generation

However the grid currently is not properly set up to accommodate power production in the distribution network

Increased communication capability is required in order to remotely monitor and control power production

Production may be owned and operated by third party which adds complexity

Restricted © Siemens AG 20XX All rights reserved.

Page 16 2013-09-23

Communication drivers

• Remote trip to prevent islanding in case of outage

•Maintenance shut down of embedded generators for safety purposes

•Monitor generator output to aid in managing distribution system power flow

 Monitor generator status to identify generators that have not properly shut down

Communication Needs

Low latency for transfer trip function

Long range to cover entire territory

Large scale to accommodate more than 50 generation facilities

Bandwidth to accommodate monitoring and control functions

Reliability since protection and safety is involved

Cost of solution ongoing and upfront are also factors

Restricted © Siemens AG 20XX All rights reserved.

Page 18 2013-09-23

Communication alternatives

	Leased lines	Cellular	Narrowband pt-pt	WIMAX
Reliability				
Latency				
Range				
Scale				
Bandwidth				
OPEX				
CAPEX				

Deploying a private broadband wireless network proved to meet all the requirements

SIEMENS

Network Diagram

Restricted © Siemens AG 20XX All rights reserved.

Page 20 2013-09-23

WiMAX used in 1.8 GHz band to provide connectivity to generation sites

Solution is leveraging 61850 for transfer trip function

IP also used for monitoring generators, QoS used to differentiate traffic

Licensed frequency provides interference protection

Infrastructure now in place can be used for other applications

Summary

Increasing need for automation in the grid driving the deployment of private networks

WiMAX is being used today by many utilities for a variety of critical smart grid applications

Feeder automation and DG control are two key applications with large growth potential

Contact

Lee Lipes Product Management I IA SC CI RC PRM

300 Applewood Crescent, Concord, ON

Office: (905) 482-4558 Mobile: (647) 205-8439 Fax: (905) 856-1995

E-mail: lee.lipes@siemens.com

siemens.com/answers

InovCity Aparecida Developing a smart grid project in EDP Brazil

It is a global player with a strong presence in the Iberian peninsula, Brazil and the United States

Wind Power

22% of EBITDA

2 electricity distribution concessions

Listed subsidiary: EDP Renováveis (EDP has 77.5%) IPO in Jun-08 Wind Power: 6.9GW Major wind operator worldwide (present in 11 countries)

Portugal

39% of EBITDA

Privatisation in 1997 (IPO) Single electricity distributor Power generation: 9.9 GW (ex-wind) (from which 4.7GW is hydro)

01

Spain

18% of EBITDA Presence since 2001 Power generation 3.9 GW (ex-wind) # 2 in gas distribution

In Brazil currently operates in an integrated manner...

... And with a presence in several states

About Ecil

- Is a Brazilian company, part of Ecil Group, a 85 years old company.
- Works with products and solutions to Smart Grid Market
- Has a strong R&D Time that creat solutions to solve local problems
- Employee more than 200 engineers and technicians
- Work with solutions in automation, smart meters, reclosers and network infrastructure

Business

• Innovative technology solutions for the electric power market.

The EDP group already has several smart grid solutions, with InovCity complement the BT network

InovCity - 1st Stage: 6 Different Areas

APARECIDA PROJECT (INOVCITY)

InovCity – Meter and Coordinator (100% Brazilian Technology)

R&D: EDP Regulatory Budget and *Ecil Energia* Technical Development

InovCity – ZIGBEE Gateway

- •Up to 8 Zigbee networks
- •8 directional antennas
- •GPRS/GSM/ 3G compatible
- •Ethernet, Bluetooth, Wi-Fi and WiMAX
- •Backup Battery
- •IP66 External Use Installation

InovCity – Architecture

eda

InovCity – Internal Topology Home

ea

InovCity – Smart Metering Management

System responsible for collecting telemetry in addition of being the manager of the solution applied in InovCity, showing the status of the components installed in the city of Aparecida

Smart Metering Management

edp	bandeir	ante								Usuário : luizamerico													
Sistema	Importações	Rede Elétrica	Instalações	Gateways	Medido	ores D	visplays	Smart Tug	Com	unicação	Comando	is Porta	al Web Clier	nte Sair	7								
Bem Vin	do Usuário: luiza	americo																			Data	a: 11/06/	/2013
::Fu	nções			Π	A	1		۲	D	d ¹⁴	2	*	2		(11)	0		цр. Ч		•	▲		
	 O Medidor 1323 	0138 está aprese 0138 está aprese 0138 está sem Ca 0136 atingiu o te 0140 atingiu o te 0137 atingiu o te 0137 atingiu o te 0135 atingiu o te Analisar Finali	entando um nív arga. mpo máximo e mpo máximo e mpo máximo e mpo máximo e	ivel de sinal sem Comun sem Comun sem Comun sem Comun	l de Rádio nicação. nicação. nicação. nicação.			ínimo acei	Ŧ		nicação Me 15886 - ■ Comunic		- 442	ação		 Re Cl di As m M Er M Te ET M vc au 	eading utting stance sset m easure onitor nergy anage mper s, met easure bltage	g proc and re e; anage emen ing ET Balan emen ature ters ar emen , curre ctive	distrib	g; ection ses; ureme ncentr wer fo tive p	ent in ators; actor, ower		

System responsible for collecting telemetry, in addition to being the manager of the solution applied in InovCity, showing the status of the components installed in the city of Aparecida.

The meter used was developed in R & D project and is approved by INMETRO – EDP with ECIL

MD-1400

- Control "on line" of energy
- Consumption in homes;
- Cut / remote on;
- Fraud Alerts;
 - Inversion quadrant;
 - Number of dismissals;
 - Meter no load;
- Measurement in 4 quadrants (for purposes of fraud);
- Measuring active energy;
- Optical port for communication; Communication Zigbee Mesh, 2.4 GHz;
- Applications in AMR and AMI;
- Measuring active energy;
- LCD display with 6 digits.

MD-2400 E MD-3400

- Measurement of neutral current;
- Measurement of active and reactive power;
- Memory mass to 37 days;
- Support future prepaid metering; Battery and SuperCap for internal
- RTC;
- DIC and FIC.

Meters and Energy Balance

Meters installed

*Status in 24/10/2013

atus in 24/10/2013			100%=11
		CME - frontier	100%
			100%=200
		Concentrators Installed	47%
			100%=460
		Meters installed transformer	42%
	AP-5000	Mataus in	100%=13,850
		Meters in Communication	18%

Public Lighting - Execution

Other information

- Installation of the LED IP occurs in two distinct regions of the city
- Improving the quality of lighting (increased CRF) and reduced power consumption

Energy Efficiency

Main indicators (ref. 06 de março)

Other information

Main Advances

- Held the efficiency of the building of the Municipality
- Performed the installation of solar panels in the neighborhood Sonho Meu II

Electric Mobility

Social Work / Community Involvement

Social Actions and community involvement

Main actions

- •230 teachers trained
- 5,100 school kits distributed
- Lectures energy efficiency to 3,500 people
- Creating weekly program on regional radio

The project allowed InovCity a great learning experience for the company

Operations

- Logistics facility
- Monitoring and constant monitoring
- Team on the ground 100% dedicated

Telecommunications

- GPRS
- Network management "ZigBee"
- Creation of own telecommunications network

Communication with the client

- Community Involvement
- Specific channels for the project

Management Stakeholders

- Roadshow regular main entities
- Regular participation in decision making

Knowledge

Management

- Registration problems
- Changing internal processes
- Training of employees

Evaluation money

• Business case design and simulation of rollout

- Why use your own Backhaul?
 - Poor GPRS network coverage
 - Low bandwidth capacity on public networks
 - Needs of high data traffic
 - High operating cost in public networks
 - Poor carriers investments

Worldwide Interoperability for Microwave Access Definition of technology InovCity Aparecida

211

Main characteristics of WiMAX

1		6			
	C	20	J		
	Ľ	\sim	P		
				1	/

Figure 1 – MiMAX Pro V80 560I Frequency Ranges		
Frequency Band	Channel Bandwidth	
5.470 – 5.950 GHz in TDD mode	• 3.5 MHz	
	• 5 MHz	
	• 7 MHz	
	• 10 MHz	
	1	

- Adaptive Modulation QPSK, 16QAM, 64QAM
- IEEE 802.16e mobile WiMAX
- Output Power: 23 dBm
- Antenna Integrated Dual Polarization directional security
- Key management PKMv2 802.16e
- X.509 digital certification for authentication of devices
- Device and methods of user authentication EAP-TLS and EAP-TTLS-cripitografia (MD5, MSCHAPv2) 3DES and AES (CCMP)
- Multi-language support

Telecommunications - backbone network and WiMax in Aparecida

InovCity – WiMax

- •4 Base Satations
- •200 CPE
- Server AAA Autentication

Thank you! jeferson.marcondes@edpbr.com.br

Project FALCON Grid Devices

cisco.

Technique 1 - Dynamic Asset Rating	 Maximizing network capacity usage by monitoring assets temperature and load, then using this to calculate real-time asset capacity 	Gridkey LVM Alstom P341 DAR Tollgrade Lighthouse
Technique 2 – Automatic Load Transfer	 Changing the configuration of the network to improve the flow of power via re-routing of load through areas of spare capacity to accommodate peaks 	Gridkey LVM Alstom P841 PMU Linak iCom Schneider T200e
Technique 3 – Meshed Networks	• Maximizing network capacity usage by monitoring assets temperature and load, then using this to calculate real-time asset capacity	Gridkey LVM Alstom P141 GE D20 RTU
Technique 4 – Energy Storage	 Using power stored in batteries on the network, to alleviate the problem by reducing the Network peak load requirements 	Gridkey LVM GE Battery Storage

WESTERN POWER

Communications Network Architecture

Communications Recommendations

Requirement	Recommendations
Robust	 Private WiMax network to provide required bandwidth (2 Mbps – 10 Mbps)
	 Hardened CPE with Integrated communication equipment (IP +WiMax)
	 100ms Latency + High availability
Cost Effective	Standard IP Communication Protocols
	 Multi Service: Open Standards - Device Interoperability – Flexible
	Optimize operating costs
Security, Security,	 Network layer + application layer security
Security	 Active authentication & monitoring
	 Security built into the devices & architecture

Preliminary Findings

Pilot Objective	Result
Distributed Generation	Network monitoring has shown we can accommodate about 20% more PV installations than previously expected (caused by overly cautious modelling software)
Dynamic Asset Rating + Load Control	Voltage optimization and control if rollout out across GB could result in saving on customer bills of over \$300m a year (up to \$15 on every domestic customer connection)
Dynamic Asset Rating	State estimation can be used effectively to complement physical monitoring (making the "big data" challenge slight less daunting).
Dynamic Asset Rating + Load Control	Massive savings and benefits from network automation for outage management. The financial benefit is from a reduction in regulatory penalties for outages.

"Being able to develop a robust telecommunications network is a critical element in our strategy, especially given the forecasted uptake in low-carbon technologies. We are pleased to be working alongside Cisco to develop the Falcon communications solution, and we are hoping it will help other utilities to develop their own smarter grids."
 —Roger Hey, Future Networks Manager, Western Power Distribution

Lessons Learned

Lesson Learned	Detail
Open Standards & Architecture is the way to go	 Complex solution with components from many different technologies from many different vendors An IP-based communications platform maximizes grid-device flexibility and allows for a modular design
Lots of unforeseeable integration issues	 Expect Trial and error Ensure vendor-supported, stringent interoperability testing Involve players early and often. Resource for integration challenges and program management.
Design WILL Evolve	 Plan for a formal design phase Create a modular design with deployment templates to reduce costs & complexity Design-in Security & QoS from the outset A well documented design will allow for easier changes

Multi Service Communication Platform

CISCO...

Leonard gets very excited about the new network.

N POWER

FALCON

DISTRIBUTION

Plug & Play

"Its a foolproof computer network, sir, that no one can break into, not even a kid." **Requires People, Processes & Tools**

cisco.

You guarantee uptime if we sprinkle this powder on the network?

Thank you.

© 2013 Cisco and/or its affiliates. All rights reserved

WESTERN POWER DISTRIBUTION Connected Grid Router 2010 (CGR2010)

111111

CISCO

ESTERN POWER

FALCON

CGR1240 Under The Cover

111111

CISCO.