

Test Report AeroMACS and C Band Telemetry EMBRAER

1 Abbreviations and Acronyms

A0	Attenuation of free space
AeroMACS	Aeronautical Mobile Airport Communications System
CPE	Customer Premises Equipment
F0	Central Frequency
OMS	Onboard Maintenance System
PCM	Pulse Code Modulation
WiMAX	Worldwide Interoperability for Microwave Access

2 Objective

The test consists of verifying the operation of the C band telemetry system operating close to the AeroMACS service with Siemens radios, the scenario will be simulated in the ground with static operation of both services.

2.1 Data Source

- a. PCM: For the airplane simulation, a tripod with 1 antenna and 1 PCM modulated data telemetry transmitter with a rate of 7Mbps @ 40W spaced at 10MHz F0 will be used.
- b. AeroMACS: Next to the airplane simulator, the mobile AeroMACS transmitter will be installed, and on the parapet 30 meters high next to the hall in the control tower, the AeroMACS Base Radio Station should be installed, considering its emission at maximum power and total bandwidth occupancy.

2.2 Tests

- a. In view of the set scenario, direct the telemetry tracking antenna towards the plane and check the spurious emissions out of range, and interference between the services as well as the quality of the PCM link.
- b. Check the frequency spacing conditions of the services in case interference occurs and simulate spacing between the two, measure the signals of both channels and record through the spectrum analyzer.

c. Reduce the power of the C-band transmitter to simulated reception levels considering the airplane at a distance of 300Km, considering: A0 = 156, 19 dB @ 5130MHz, observe in the spectrum analyzer and telemetry receivers the influence of the AeroMACS radio on the PCM, verify BER and number of bad frames of the PCM decoder, measure the signals of both channels and record by the spectrum analyzer.

2.3 Systems Topology

2.3.1 Aeronautical Telemetry - FTI

Through the Aeronautical Telemetry system the aircraft sends data generated by the embedded system to the ground telemetry unit, where they will be treated and presented to the flight test engineers, who can follow the test of the aircraft in real time. It is not possible, however, the communication in the opposite direction, that is, the Earth Station is not able to send information to the Aircraft.

Main features of Aeronautical Telemetry:

a. The Frequency Band: 5091-5150 MHz (for test, transmitter was set to 5100 MHz)

- b. Power transmitted: 40 W
- c. Signal Modulation: PCM / FM
- d. Antenna Type and Gain (Aircraft): Omnidirectional, 3 dBi
- e. Type and antenna gain (ground): Parabolic, 35 dBi
- f. Minimum signal level at receiver: -85 dBm
- g. Link range: 320 km

Figure 1: Topology of the System of Acquisition of Data embarked in the aircraft + Telemetry.

2.3.2 AeroMACS (Sending OMS packages on AeroMACS)

For AeroMACS communication tests, we used the OMS (Onboard Maintenance System) service normally shipped on Embraer aircraft as a packet generator and acknowledgment of receipt, simulating in full the interferences that could be generated in an aircraft or airport. The OMS service is responsible for the aircraft maintenance, detecting and isolating faults, generating maintenance messages and recording all this information in an internal memory to later send to the maintenance engineers when the aircraft touches the ground.

AeroMACS system features:

a. The frequency band: 5091-5150 MHz (for test, transmitter was set to 5145 MHz)

- b. Transmitted Power: 125mW
- c. Modulation: 64QAM
- d. Antenna type and gain (aircraft): 6 dBi
- e. Type and antenna gain (ground): 17 dBi
- f. Minimum signal level at receiver: -87dBm
- g. Link range: 3 km

Figure 2: AeroMACS Topology

2.3.2.1 System Assignment

Provide high-speed Wireless communication for aircraft during landing, taxiing and take-off.

2.3.2.2 Solution

The Ruggedcom Base Radio Station WIN7251 can provide a solid cover over the entire surface of the aerodrome, allowing mobility in various services.

2.3.2.3 Benefits

Aircraft are exchanging an ever-increasing amount of data with the tower during landing, taxiing and takeoff. The AeroMACS solution is a robust solution to meet this growth, as it currently provides significantly higher data rates and service flow control to distinguish priorities.

3 Test Setup

Figure 3: AeroMACS Base Radio installation in the Embraer Command Tower.

Figure 4: Antenna and Radio installation pointing to the runway.

Figure 5: Installation simulating the plane in C-band.

Figure 6: Setup of the installation simulating the AeroMACS client.

The Anatel 545 resolution was adopted to support the test:

Art.1 To allocate, additionally, the band from 5.091 MHz to 5.151 MHz to the Mobile Service, on a primary basis.

Art.2 Allocate the band from 5.091 MHz to 5.151 MHz to the Aeronautical Mobile Service, in Telemetry applications, on a primary basis.

Article 3 To approve the Regulation on Conditions of Use of Radio frequencies in the Range from 5.091 MHz to 5.151 MHz.

The figure shows the available channels in the spectrum and the spacing between them,

Figure 7: Channels available for the test.

Topology of communication systems application T 1 Antena Omini 6dBi Amplificador Sinal Radio Duplexador RF 100mW OMS 64 QAM Wimax Antena Omini 3dBi Amplificador Radio Modulador Sinal PCM/FM Banda C Telemetria 40W Ruído Interferência Ł Antena Ť.t.Ť Amplificador Setorial 17dBi Sinal Duplexador Radio OMS 64 QAM Wimax Entrada NYK Antena Amplificador Demodulador Radio Parabólica 35dBi Sinal RF PCM/FM Banda C Telemetria Entrada

Figure 8: Communication diagram of services.

Illustration of the tests installation in distancing from the Services

Figure 9: Installation setup simulating the AeroMACS client and long distance telemetry.

3.1 Test Results

3.1.1 Condition 1

- Telemetry Transmitter Frequency: 5100 MHz a.
- Telemetry transmitter power: 40 W b.
- AeroMACS Frequency Service: 5145 MHz c.
- Maximum power condition of the Telemetry over the AeroMACS service d.
- AeroMACS reception service operating besides the telemetry transmitter. e.

MxAIRMACS.set 27/04/17 12:50 = Clear Auto Peak etect 5.1 GHz -69.9 dBm 5.145 GHz -92.4 dBm M1 30.0 40.0 50.0 -60.0 -70.0 80.0 90.0 -100.0 Center:5.12 GHz Span:100 MHz Anterior Próximo 🕨 Recall Sair

3.1.1.1 Test Evidences

Figure 10: Spectrum analyzer showing the two services (left: Telemetry, right: AeroMACS)

Figure 11: Telemetry station reception

Figure 12: Measurement Analyzer near the truck with the band transmitter with Omnidirectional antenna.

RF	Legend: requires service restart requires reboot
CPE Status	Operational
DL RSSI	-71.15
DL CINR	23.72
DL CINR R3	28.81
MIMO mode	MIMO A
TX Power [dBm]	-25.43
UL MCS	QPSK-CTC-1/2
DL MCS	QAM64-CTC-5/6
Estimated Distance from BS [m]	0
Received bytes	4247515
Received packets	4056
Sent bytes	76196
Sent packets	1012
DL rate [Kb/sec]	16
UL rate[Kb/sec]	0

Figure 13: Truck CPE report image with Omnidirectional antenna.

Note: Low modulation was observed in the transmission of the AeroMACS subscriber equipment due to a possible problem with the antenna port RF 1, moreover the reception modulation was in the maximum modulation.

Figure 14: Measurement Analyzer near the truck with Shark antenna.

PE Status	Operational	Ĵ
L RSSI	-74.51	
L CINR	21.78	
L CINR R3	26.74	
IMO mode	MIMO A	
X Power [dBm]	-3.93	
LMCS	QAM64-CTC-5/6	
MCS	QAM64-CTC-5/6	
timated Distance from BS [m]	0	Ĵ
ceived bytes	84407060	
ceived packets	66849	
ent bytes	42423	
ent packets	296	
L rate [Kb/sec]	859	
_ rate[Kb/sec]	0	

Figure 15: CPE report image of the truck with Shark uplink antenna without interference.

3.1.2 Condition 2

- a. Telemetry Transmitter Frequency: 5100 MHz
- b. Telemetry transmitter power: 40.27 μ W (EIRP)
- c. AeroMACS Frequency Service: 5145 MHz
- d. Minimum power condition over the AeroMACS service

e. Telemetry antenna signal reception from an aircraft at 300km distant and AeroMACS service in the ground in line of sight with the telemetry antenna.

3.1.2.1 Test Evidences

Figure 16: Spectrum analyzer showing the two services (left: Telemetry, right: AeroMACS). Telemetry: 5100MHz; AeroMACS: 5145MHz

Figure 17: Reception condition of the airplane telemetry station.

Figure 18: Measurement Analyzer near the truck reception condition of the aircraft telemetry station at 300km.

CPE Status	Operational	
DL RSSI	-71.17	
DL CINR	24.10	
DL CINR R3	29.18	
MIMO mode	MIMO A	
TX Power [dBm]	2.51	
UL MCS	QAM64-CTC-5/6	
DL MCS	QAM64-CTC-5/6	
Estimated Distance from BS [m]	0	
Received bytes	4899	
Received packets	38	
Sent bytes	4479	
Sent packets	28	l.
DL rate [Kb/sec]	0	
UL rate[Kb/sec]	0	

Figure 19: CPE truck report image with Shark uplink antenna.

3.1.3 Condition 3

- a. Telemetry Transmitter Frequency: 5100 MHz
- b. Telemetry transmitter power: 40.27 μ W (EIRP)
- c. AeroMACS Frequency Service: 5120 MHz
- d. Minimum power condition over the AeroMACS service
- e. Telemetry antenna signal reception from an aircraft at 300km distant and AeroMACS service in the ground in line of sight with the telemetry antenna.

3.1.3.1 Test Evidences

Figure 20: Spectrum analyzer showing the two services (left: Telemetry, right: AeroMACS).

Figure 21: Reception condition of the telemetry station of the airplane at 300Km based on the spacing of 20MHz between services.

Figure 22: Measurement Analyzer near the truck reception condition of the telemetry station of the airplane at 300Km based on the spacing of 20MHz.

CPE Status	Operational	
DL RSSI	-63.31	
DL CINR	26.28	
DL CINR R3	30.66	
MIMO mode	MIMO A	
TX Power [dBm]	2.97	
UL MCS	QAM16-CTC-3/4	
DL MCS	QAM64-CTC-5/6	
Estimated Distance from BS [m]	0	
Received bytes	2613	
Received packets	18	
Sent bytes	2788	
Sent packets	19	
DL rate [Kb/sec]	0	
UL rate[Kb/sec]	0	

Figure 23: CPE truck report image with Shark 5120MHz antenna.

3.1.4 Condition 4

- a. Telemetry Transmitter Frequency: 5100 MHz
- b. Telemetry Transmitter Power: 40.27 µW (EIRP
- c. AeroMACS Frequency Service: 5110 MHz
- d. Minimum power condition over the AeroMACS service
- e. Telemetry antenna signal reception from an aircraft at 300km distant and AeroMACS service in the ground in line of sight with the telemetry antenna.

3.1.4.1 Test Evidences

Figure 24: Spectrum analyzer showing the two services (left: Telemetry, right: AeroMACS). Spacing: 10MHz.

Figure 25: Reception condition of the airplane telemetry station at 300Km based on 10MHz spacing between services.

Figure 26: Measurement Analyzer near the truck reception condition of the telemetry station of the airplane at 300Km based on 10MHz spacing.

CPE Status	Operational	
DL RSSI	-77.91	
DL CINR	18.57	
DL CINR R3	22.71	
MIMO mode	MIMO A	
TX Power [dBm]	4.14	
UL MCS	QAM16-CTC-3/4	
DL MCS	QAM64-CTC-5/6	
Estimated Distance from BS [m]	0	
Received bytes	13463	
Received packets	87	
Sent bytes	4521	
Sent packets	29	
DL rate [Kb/sec]	2	
UL rate[Kb/sec]	0	

Figure 27: CPE truck report image with Shark 5110MHz antenna.

3.1.5 Condition 5

- a. Telemetry Transmitter Frequency: 5100 MHz
- b. Telemetry Transmitter Power: 40.27 µW (EIRP)
- c. AeroMACS Frequency Service: 5105 MHz
- d. Minimum power condition over the AeroMACS service
- e. Telemetry antenna signal reception from an aircraft at 300km distant and AeroMACS service in the ground in line of sight with the telemetry antenna.

3.1.5.1 Test Evidences

Figure 28: Spectrum analyzer showing the two services (left: Telemetry, right: AeroMACS). Spacing: 5MHz.

Figure 29: Reception condition of the telemetry station of the airplane at 300Km based on the spacing of 5MHz between services.

Figure 30: Measurement Analyzer near the truck reception condition of the telemetry station of the airplane at 300Km based on the spacing of 5MHz.

Note: CPE did not connect, so it was not possible to save the screen.

3.1.6 Condition 6

- a. Telemetry Transmitter Frequency: 5100 MHz
- b. Telemetry Transmitter Power: 40.27 µW (EIRP)
- c. AeroMACS Frequency Service: 5100 MHz
- d. Minimum power condition over the AeroMACS service
- e. Telemetry antenna signal reception from an aircraft at 300km distant and AeroMACS service in the ground in line of sight with the telemetry antenna.

3.1.6.1 Test Evidences

Figure 31: Spectrum analyzer showing the two services (left: Telemetry, right: AeroMACS). Spacing: 0MHz.

Figure 32: Reception condition of the telemetry station of the airplane at 300Km with base without spacing between services.

3.1.7 Additional Information

Figure 33: Projection of WiMAX radio coverage (AeroMACS).

	Network	Monitor (RX)	PTP Timestamp	Clear RX	1	Buffer Config	1		
Adapter (TX)	Adapter (RX)		//	-	Packets RX	Bytes RX	_		
[0.0.0.0] - Microsoft	[192.168.100.50] - Intel(R) 8		Sync PC Clock with F	TP UDP/IPv4:	102,419	126,929 KB		med iNet-X Pkts: 0	
Input PCAP File		Elapsed Time		TCP/IPv4:	0	0) INE	T-X Sync Errors: 0	
E:\190-E2\E190_E2_20001_00234_000.cap	Star RX Stop RX	00:07:56		ICMP/IPv4:	[0	5	SSR Events: 0	_
Elapsed Time	Rec PCAP File Output PCA	File 🗖 Load Aircraft D	DB Check PCAP	Files Others:	32	2 KB			
ackets TX: 0 00:00:00	Multiples Files Data 003.c		Extr	act Placed Total:	102,451	126,931 KB			
Pkt Rate: 0 Dest. IP Address Src Port	Packet		Elanced Time Rec		otal Bit Rate 1				
235.0.0.1 2056 Bytes TX: 0 Stream ID (hex) Dst Port	Split Size (MB): 512		00:00:00 Str:	Ch: 0	2.16 Mbps	213			
Bit Rate: 0.00 Mbps CABABABC 2057	Streams ON OF	Resets PTP Sync	Packets RX Lost F	kts OutOfSeq Byt	es RX Pkt Ri	ate Bit Ra	ate		
imestamp: 0.000 Bit Rate (Mbps): 46 🐳 🗹 Mbp	AFDX								
Pkt Len: 0 Payload Len: 1200 Data Simulation	Hateu								
	TTP			—¦—¦—					
kt TX time: 0 us Inter-Frm Gap Delay (us): 0 🔹	PCM								
Net-X Simul Threads: 1 🔻	M1553	·//		—¦—¦—	— <u> </u> —	—¦——			
	CAN	- ii	-ii	—i—i—	— <u> </u>	—i—			
	ABI	- ii	-íí	—í—í—	——í—	—í—			
Start TX Stop TX	ACB	- ii	- i i	—í—í—	— <u> </u>	—i—			
Placed Viewer	CCDL		—i ——i —	—i—i					
A429 Viewer	Total Net-X: 1 1	0 NO SYNC	102.335	132 0 126	5.919 KB	213 2.16	Mbps		
		-, -,	,,	, ,		,			
RX Stream ID Stream Type Stream Name	Last Timestamp		ync Err Packets RX		it of Seq 1			Bit Rate	Bytes RX
RX Stream ID Stream Type Stream Name ON ABABABAB iNet-X iNet-X	Last Timestamp 00:08:12 - 01/01/2		ync Err Packets RX 0 102,335	Lost Pkts Ou 132	nt of Seq 1	Pkt Rate 213	Pkt Size	Bit Rate 2.16 Mbps	Bytes RX 126,919
									-
									-
									-
									-
									-
									-
									-
									-

Figure 34: Telemetry payload monitoring system.

Figura 35: DECEA, Embraer and Siemens.

4 Conclusion

Based on the tests described above and considering item 3.1.3, we can state that the best channel spacing condition of the Telemetry and AeroMACS services will be 20 MHz, observe in the test results of item 3.1.4 with a spacing of 10 MHz that The PCM telemetry signal eye diagram begins to degrade causing errors in the demodulator. Minor spacing's simulated in items 3.1.5 and 3.1.6 proved to be impractical for the conviviality of services.