Aeronautical Mobile Airport Communications System

WIMAX

Advanced CNS Technologies

GRC Initiates Modern Airport Communications Research

- Analyzed requirements and potential technologies for advanced networked wireless communications for airport surface applications
- Performed C-Band characterization of 5091-5150 MHz for airport applicability
- Developed airport network architecture concept

• Future Communications Study

ICAO Endorsed FCS Technology Recommendations

• GRC provided the technology assessments supporting the FAA in the Future Communications Study. US and EUROCONTORL reached agreement on the use of IEEE 802.16 standard for airport surface communications.

International Spectrum Allocation World Radiocommunication Conference Decision

 GRC provided technical analyses supporting a new AM(R)S allocation for airport surface communications in the 5091-5150 MHz Band.

Next Generation Development

New ATM Requirements – Future Communications

- Project Level and Space Act Agreements for concepts of use, requirements, and architecture for Cband airport surface wireless and Lband terrestrial en-route communication systems
- Test bed infrastructure to enable validation of aviation profile of IEEE 802.16e standard
- GRC's research supports FAA
 NextGen implementation decisions
- Contacts: Rafael.D.Apaza@nasa.gov; 216.433.2875 Brent.Phillips@faa.gov; 202.267.2745

Airport Surface Communications

Highest concentration of users in NAS

- Mobile and fixed assets/applications
- Surface modifications and hazards

Communications, Navigation and Surveillance (CNS) Test Bed

Government / Industry partnership for CNS technology risk mitigation, NextGen ATM concepts validation, and future service demonstrations

Over \$25M invested by NASA, FAA, Sensis, ITT, Others since 2002

- Cleveland Hopkins Airport & NASA Glenn Research Center
- Advanced surface wireless
 communications networks
- Remote operations from NASA control center
- Aviation Research Vehicle (ARV) emulate mobile users

Aeronautical Mobile Airport Communications System

Mobile Applications of AeroMACS

- ATC Communications with any aircraft anywhere (e.g. loading/modifying FMS via CMU with 4D trajectories)
- AOC and non-ATS voice and data (e.g. AIS, GPS updates, graphical weather, moving maps, hazards)
- Vehicles in the airport movement area (e.g. surface management, gate control, fire/safety, de-icing, snow)
- · Airport ops (e.g. security, video from cockpit and cabin)

Fixed Applications of AeroMACS

- Sensor data collection/dissemination for situational awareness (e.g. MLAT/ASDE-X; ADS-B; ASR: ASSC)
- Network enabled Weather Data (e.g. WTIC, AAtS)
- Cable/Telco replacement/augmentation (e.g. fiber backup, cable loop extensions, construction restoration)

AeroMACS Profile

• Based on the well-known "WiMAX" implementation of the IEEE 802.16 mobile wireless standard.

Subasting Station Deployment

Base and Subscriber Stations Locations Within Test Bed

AeroMACS Standards

RTCA Special Committee (SC-223)

 Completed development of Minimum Operational Performance Standards (MOPS)

ICAO Working Group S

Sensis

- Nearing Completion of Standards and Recommended Practices (SARPS)
- EUROCAE Working Group 82
- Completed of Minimum Aviation System Performance Standards (MASPS)

